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Orthogonal Projection Using an Orthonormal Set
(Part 1)

▶ Let (u1, . . . , uk) be an orthonormal basis of a subspace E ⊂ V

▶ For any v ∈ E , there exist a1, . . . , ak ∈ F such that

v = a1u1 + · · ·+ akuk

▶ Since, for each 1 ≤ j ≤ k ,

(v , uj) = (a1u1 + · · ·+ akuk , uj) = aj ,

it follows that

v = (v , u1)u1 + · · ·+ (v , uk)uk
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Orthogonal Projection Using an Orthonormal Set
(Part 2)

▶ Consider the map πE : V → E given by

πE (v) = (v , u1)u1 + · · ·+ (v , uk)uk

▶ For any v ∈ V and 1 ≤ j ≤ k ,

(v − πE (v), uk) = (v , uk)− (v , uk) = 0

and therefore
v − π⊥

E (v) ∈ E⊥

▶ Therefore, if for any v ,

π⊥
E (v) = v − πE (v),

then
v = πE (v) + π⊥

E (v)

▶ It follows that, if E has an orthonormal basis, then

E ⊕ E⊥ = V
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Constructing an Orthonormal Basis of V (Part 1)

▶ Let E be a k-dimensional subspace of V , with k ≥ 1

▶ Let (v1, . . . , vk) be a basis of E

▶ For each 1 ≤ j ≤ k , let

Ej = span(v1, . . . , vj)

▶ We can construct an orthonormal set that spans E by induction

▶ Let
u1 =

v1
|v1|

,

▶ Then {u1} is an orthonormal basis of E1
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Constructing an Orthonormal Basis (Part 2)

▶ Assume that j < k and that (u1, . . . , uj) is an orthonormal basis
of Ej ⊂ E

▶ Let
vj+1 = πEj (vj+1) + π⊥

Ej
(vj+1),

where

πEj (vj+1) = (vj+1, u1)u1 + · · ·+ (vj+1, uj)uj ∈ Ej

π⊥
Ej
(vj+1) = vj+1 − πEj (vj+1) ∈ E⊥

j

▶ Since vj+1 /∈ Ej and πEj (vj+1) ∈ E , it follows that

π⊥
Ej
(vj+1) ̸= 0

▶ Let

uj+1 =
π⊥
E (vj+1)

|π⊥
E (vj+1)|

▶ Since uj+1 ∈ E⊥
j , (uj+1, ui ) = 0 for all 1 ≤ i ≤ j

▶ Therefore, (u1, . . . , uj+1) is an orthonormal basis of Ej+1
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Gram-Schmidt Construction of Orthonormal Basis

▶ Let (v1, . . . , vn) be a basis of an inner product space V

▶ There exists an orthonormal basis (u1, . . . , un) such that for each
1 ≤ k ≤ n,

span(u1, . . . , uk) = span(v1, . . . , vk)
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Unitary Set

▶ Let V be a complex vector space

▶ A set {e1, . . . , ek} is called unitary if

(ei , ej) = δij , 1 ≤ i , j ≤ k

▶ If v = a1e1 + · · ·+ akek , then for each 1 ≤ j ≤ k,

(v , ej) = (a1e1 + · · ·+ akek , ej)

= a1(e1, ej) + · · ·+ ak(ek , ej)

= aj

▶ It follows that a unitary set is linearly independent
▶ If a1e1 + · · ·+ akek = 0, then for each 1 ≤ j ≤ k,

aj = (a1e1 + · · ·+ akek , ej) = 0

▶ If dimV = n, then a unitary set with n elements is a unitary
basis
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Gram-Schmidt

▶ Lemma. Any (possibly empty) unitary set can be extended to a
unitary basis

▶ Suppose S = {e1, . . . , ek} is a unitary set, where k < dimV

▶ The span of S is not all of V and therefore there is a nonzero
vector v ∈ V such that v /∈ S

▶ Let v̂ = v − (v , e1)e1 − · · · − (v , ek)ek
▶ v̂ ̸= 0, because v /∈ the span of S

▶ v̂ is orthogonal to S , because for each 1 ≤ j ≤ k,

(v̂ , ej) = (v − (v , e1)e1 − · · · − (v , ek)ek , ej) = (v , ej)− (v , ej) = 0

▶ If

ek+1 =
v̂

∥v̂∥
,

then ∥ek+1∥ = 1 and (ek+1, ej) = 0 for each 1 ≤ j ≤ k

▶ Therefore, {e1, . . . , ek+1} is a unitary set
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Adjoints of Linear Maps and Matrices (Part 1)

▶ Let V ,W be inner product spaces and L : V → W be a linear
map

▶ The (Hermitian) adjoint of L is defined to be the map
L∗ : W → V such that for any v ∈ V and w ∈ W ,

(L(v),w) = (v , L∗(w))

▶ If M is an m-by-n matrix, its (Hermitian) adjoint is defined to
be the n-by-m matrix

M∗ = M
T
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Adjoints of Linear Maps and Matrices (Part 2)

▶ Let
E =

[
e1 . . . en

]
be a unitary basis of V and

F =
[
f1 . . . fm

]
be a unitary basis of W

▶ Let L : V → W be a linear map and M be the matrix such that

LE = FM,

▶ Let L∗ : W ∗ → V ∗ be the adjoint of L and N be the matrix such
that

L∗F = EN
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Adjoints of Linear Maps and Matrices (Part 3)

▶ For any vectors

v = e1a
1 + · · ·+ ena

n = Ea and w = f1b
1 + · · ·+ fmb

m = Fb,

we get

(L(v),w)) = (LEa,Fb)

= (FMa,Fb)

= (fpM
p
j a

j , fq b̄
q)

= (fp, fq)M
p
j a

j b̄q

= δpqM
p
j a

j b̄q

=
m∑
j=1

n∑
p=1

Mp
j a

j b̄p

12 / 26



Adjoints of Linear Maps and Matrices (Part 4)

▶ On the other hand,

(v , L∗(w)) = (Ea, L∗(Fb))

(Ea,ENb)

= (eja
j , ekN

k
p b

p)

= (ej , ek)a
j N̄k

p b̄
p

= δjka
j N̄k

p b̄
p

=
m∑
j=1

n∑
p=1

N̄ j
pa

j b̄p

▶ Since (L(v),w) = (v , L∗(w)) for all v ∈ V and w ∈ W , it
follows that

N̄ j
p = Mp

j , i.e., N
j
p = M̄p

j ,

or equivalently,
N = M∗
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Adjoints of Linear Maps and Matrices (Part 5)

▶ If E is a unitary basis of V and F is a unitary basis of W ,
L : V → W is a linear map, and M is a matrix that satisfies

L(E ) = FM,

then
L∗(F ) = EM∗
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Basic Properties of Adjoint Map

▶ If L, L1, L2 : V → W are linear maps and c ∈ F, then

(L1 + L2)
∗ = L∗1 + L∗2

(cL)∗ = c̄L∗

(L1 ◦ L2)∗ = L∗2 ◦ L∗1
(L∗)∗ = L

(w , L(v)) = (L∗(w), v)
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Fundamental Subspaces of Adjoint Map

▶ Let L : V → W be a map between inner produt spaces

▶ Then

ker(L∗) = (image(L))⊥ (1)

ker(L) = (image(L∗))⊥ (2)

image(L) = (ker(L∗))⊥ (3)

image(L∗) = (ker(L))⊥ (4)

▶ That
▶ For any subspace S , (S⊥)⊥ = S
▶ For any linear map A, (A∗)∗ = A

imply that (2),(3),(4) follow directly from (1)
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Proof that ker(L∗) = (image(L))⊥

w ∈ ker(L∗) ⇐⇒ L∗(w) = 0

⇐⇒ ∀v ∈ V , (v , L∗(w)) = 0

⇐⇒ ∀v ∈ V , (L(v),w) = 0

⇐⇒ w ∈ (image(L))⊥
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Geometric Description of a Linear Map and its
Adjoint

▶ Recall that if E is a subspace of V , then

V = E ⊕ E⊥

▶ Therefore,
V = (ker(L))⊕ (ker(L))⊥

▶ It is easy to show that the restriction of L to (ker(L))⊥,

L : (ker(L))⊥ → image(L)

is bijective
▶ Equivalently, by (4),

L : image(L∗) → image(L)

is bijective
▶ Therefore,

rank(L) = dim(image(L)) = dim(image(L∗)) = rank(L∗)
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Isometries

▶ A map (not assumed to be linear) L : V → W , where V and W
are normed vector spaces, is an isometry if for any v ∈ V ,

|L(v)| = |v |

▶ Theorem: If V and W are inner product spaces and L : V → W
is an isometry, then L is linear and satisfies for any v1, v2 ∈ V ,

(L(v1), L(v2)) = (v1, v2)

▶ Lemma: L : V → W is an isometry if and only if L∗ ◦ L = IV ,
i.e., L∗ is a left inverse of L

▶ In particular, if L(v) = 0, then

v = L∗(L(v)) = 0

and therefore, ker(L) = {0}
▶ It follows that if L : V → W is an isometry, then

dim(V ) ≤ dim(W )
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Basic Properties of Isometries

▶ If L : V → W is an isometry and (v1, . . . , vn) is an unitary basis
of V , then (L(v1), . . . , L(vn)) is an unitary set in W

▶ If L1 : V → W and L2 : W → X are unitary, then so is
L2 ◦ L1 : V → X
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Unitary Transformation

▶ If W = V , then an isometry L : V → V is called a unitary
transformation

▶ If V is an inner product space, a linear transformation
L : V → V is unitary, if for any v ,w ∈ V , if any of the
following equivalent statements hold:

(L(v), L(w)) = (v ,w)

(L∗L(v),w) = (v ,w)

L∗ ◦ L = I

L is invertible and L−1 = L∗
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Unitary Matrices

▶ Let L : V → V be a unitary map

▶ If (u1, . . . , un) is a unitary basis of V and L(uk) = M j
kuj , then

δjk = (uj , uk)

= (L(uj), L(uk))

= (uj , (L
∗ ◦ L)(uk))

= (uj , (M
∗M)ikui )

= (M∗M)jk

▶
M∗M = I

▶ A matrix M is unitary if M∗M = MM∗ = I
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Examples of Unitary Matrices

▶ An n-by-n matrix is unitary if and only if its columns form a
unitary basis of Fn

▶ A real 2-by-2 matrix is a unitary matrix with positive
determinant if and only if it is of the form[

cos θ − sin θ
sin θ cos θ

]
▶ For any θ1, θ2 ∈ R [

e iθ
1

0

0 e iθ
2

]
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More Properties of Unitary Matrices

▶ Let U be a unitary matrix

▶ det(U∗) = det(U)

▶ Because det(AT ) = det(A) and det(A) = det(A)

▶ If λ is an eigenvalue of U, then |λ| = 1
▶ Because if λ is an eigenvalue of U with eigenvector v , then

|v | = |Uv | = |λv | = |λ||v |,

which implies |λ| = 1
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Properties of unitary maps and matrices

▶ If L1, L2 are unitary maps, then so is L1 ◦ L2
▶ If M1,M2 are unitary matrices, then so is M1M2

▶ If L is unitary, then L is invertible and L−1 = L∗ is unitary
▶ If M is unitary, then M is invertible and M−1 = M∗ is unitary

▶ The identity map is unitary
▶ The identity matrix is unitary
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Unitary Group

▶ Define the unitary group U(V ) of a Hermitian vector space V to
be the set of all unitary transformations

▶ Denote
U(n) = U(Cn)

using the standard Hermitian inner product on Cn

▶ Both satisfy the properties of an abstract group G
▶ Any ordered pair (g1, g2) ∈ G × G uniquely determine a third,

denoted g1g2 ∈ G
▶ (Associativity) (g1g2)g3 = g1(g2g3)
▶ (Identity element) There exists an element e ∈ G such that

ge = eg = g for any g ∈ G
▶ (Inverse of an element) For each g ∈ G , there exists an element

g−1 ∈ G such that gg−1 = g−1g = e

▶ U(n) is an example of a matrix group

▶ Both U(V ) and U(n) are examples of Lie groups
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