MA-GY 7043: Linear Algebra II

Orthogonal Projection Construction of Unitary Basis Adjoint Maps and Matrices Unitary Transformations and Matrices

Deane Yang

Courant Institute of Mathematical Sciences New York University

February 20, 2025

Outline I

Orthogonal Projection Using an Orthonormal Set (Part 1)

Let (u₁,..., u_k) be an orthonormal basis of a subspace E ⊂ V
 For any v ∈ E, there exist a¹,..., a^k ∈ F such that

$$v = a^1 u_1 + \dots + a^k u_k$$

• Since, for each $1 \le j \le k$,

$$(\mathbf{v}, \mathbf{u}_j) = (\mathbf{a}^1 \mathbf{u}_1 + \cdots + \mathbf{a}^k \mathbf{u}_k, \mathbf{u}_j) = \mathbf{a}^j,$$

it follows that

$$v = (v, u_1)u_1 + \cdots + (v, u_k)u_k$$

<ロト<部ト<E>< E> E のQで 3/26

Orthogonal Projection Using an Orthonormal Set (Part 2)

• Consider the map $\pi_E: V \to E$ given by

$$\pi_E(\mathbf{v}) = (\mathbf{v}, u_1)u_1 + \cdots + (\mathbf{v}, u_k)u_k$$

• For any $v \in V$ and $1 \leq j \leq k$,

$$(v - \pi_E(v), u_k) = (v, u_k) - (v, u_k) = 0$$

and therefore

$$v - \pi_E^{\perp}(v) \in E^{\perp}$$

Therefore, if for any v,

$$\pi_E^{\perp}(\mathbf{v}) = \mathbf{v} - \pi_E(\mathbf{v}),$$

then

$$v = \pi_E(v) + \pi_E^{\perp}(v)$$

It follows that, if E has an orthonormal basis, then

 $E \oplus E^{\perp} = V$

Constructing an Orthonormal Basis of V (Part 1)

Let E be a k-dimensional subspace of V, with k ≥ 1
Let (v₁,..., v_k) be a basis of E
For each 1 ≤ j ≤ k, let

$$E_j = \operatorname{span}(v_1, \ldots, v_j)$$

We can construct an orthonormal set that spans E by induction
 Let
 u₁ = V₁/V₁,

$$u_1=\frac{v_1}{|v_1|},$$

• Then $\{u_1\}$ is an orthonormal basis of E_1

Constructing an Orthonormal Basis (Part 2)

Assume that j < k and that (u₁,..., u_j) is an orthonormal basis of E_j ⊂ E
 Let

$$v_{j+1} = \pi_{E_j}(v_{j+1}) + \pi_{E_j}^{\perp}(v_{j+1}),$$

where

$$\pi_{E_j}(v_{j+1}) = (v_{j+1}, u_1)u_1 + \dots + (v_{j+1}, u_j)u_j \in E_j$$

$$\pi_{E_j}^{\perp}(v_{j+1}) = v_{j+1} - \pi_{E_j}(v_{j+1}) \in E_j^{\perp}$$

▶ Since $v_{j+1} \notin E_j$ and $\pi_{E_j}(v_{j+1}) \in E$, it follows that

$$\pi_{E_j}^{\perp}(v_{j+1}) \neq 0$$

Let

$$u_{j+1} = \frac{\pi_E^{\perp}(v_{j+1})}{|\pi_E^{\perp}(v_{j+1})|}$$

Since u_{j+1} ∈ E_j[⊥], (u_{j+1}, u_i) = 0 for all 1 ≤ i ≤ j
 Therefore, (u₁,..., u_{j+1}) is an orthonormal basis of E_{j+1}

Gram-Schmidt Construction of Orthonormal Basis

- Let (v_1, \ldots, v_n) be a basis of an inner product space V
- ► There exists an orthonormal basis (u₁,..., u_n) such that for each 1 ≤ k ≤ n,

 $\operatorname{span}(u_1,\ldots,u_k) = \operatorname{span}(v_1,\ldots,v_k)$

Unitary Set

Let V be a complex vector space
A set {e₁,..., e_k} is called unitary if

(e_i, e_j) = δ_{ij}, 1 ≤ i, j ≤ k

If v = a¹e₁ + ··· + a^ke_k, then for each 1 ≤ j ≤ k,

(v, e_j) = (a¹e₁ + ··· + a^ke_k, e_j)
= a¹(e₁, e_j) + ··· + a^k(e_k, e_j)
= a_j

It follows that a unitary set is linearly independent
 If a¹e₁ + · · · + a^ke_k = 0, then for each 1 ≤ j ≤ k,
 a^j = (a¹e₁ + · · · + a^ke_k, e_j) = 0

If dim V = n, then a unitary set with n elements is a unitary basis

Gram-Schmidt

- Lemma. Any (possibly empty) unitary set can be extended to a unitary basis
- Suppose $S = \{e_1, \ldots, e_k\}$ is a unitary set, where $k < \dim V$
- The span of S is not all of V and therefore there is a nonzero vector v ∈ V such that v ∉ S
- Let $\hat{v} = v (v, e_1)e_1 \cdots (v, e_k)e_k$
- $\hat{v} \neq 0$, because $v \notin$ the span of *S*
- \hat{v} is orthogonal to *S*, because for each $1 \le j \le k$,

$$(\hat{v}, e_j) = (v - (v, e_1)e_1 - \dots - (v, e_k)e_k, e_j) = (v, e_j) - (v, e_j) = 0$$

► If

$$e_{k+1}=\frac{\hat{v}}{\|\hat{v}\|},$$

then $||e_{k+1}|| = 1$ and $(e_{k+1}, e_j) = 0$ for each $1 \le j \le k$ Therefore, $\{e_1, \ldots, e_{k+1}\}$ is a unitary set

Adjoints of Linear Maps and Matrices (Part 1)

- Let V, W be inner product spaces and L : V → W be a linear map
- The (Hermitian) adjoint of *L* is defined to be the map $L^*: W \to V$ such that for any $v \in V$ and $w \in W$,

$$(L(v),w)=(v,L^*(w))$$

If M is an m-by-n matrix, its (Hermitian) adjoint is defined to be the n-by-m matrix

$$M^* = \overline{M}^7$$

Adjoints of Linear Maps and Matrices (Part 2)

Let

$$E = \begin{bmatrix} e_1 & \ldots & e_n \end{bmatrix}$$

be a unitary basis of V and

$$F = \begin{bmatrix} f_1 & \dots & f_m \end{bmatrix}$$

be a unitary basis of \boldsymbol{W}

• Let $L: V \rightarrow W$ be a linear map and M be the matrix such that

$$LE = FM$$
,

• Let $L^*: W^* \to V^*$ be the adjoint of L and N be the matrix such that

$$L^*F = EN$$

<ロト < 合 ト < 言 ト < 言 ト 言 の < で 11/26

Adjoints of Linear Maps and Matrices (Part 3)

For any vectors

$$v = e_1 a^1 + \dots + e_n a^n = Ea$$
 and $w = f_1 b^1 + \dots + f_m b^m = Fb$,
we get

$$(L(v), w)) = (LEa, Fb)$$

= (FMa, Fb)
= (f_pM_j^pa^j, f_q\bar{b}^q)
= (f_p, f_q)M_j^pa^j\bar{b}^q}
= \delta_{pq}M_j^pa^j\bar{b}^q
= $\sum_{j=1}^{m}\sum_{p=1}^{n}M_j^pa^j\bar{b}^p$

12 / 26

Adjoints of Linear Maps and Matrices (Part 4)

On the other hand,

$$(v, L^*(w)) = (Ea, L^*(Fb))$$
$$(Ea, ENb)$$
$$= (e_j a^j, e_k N_p^k b^p)$$
$$= (e_j, e_k) a^j \bar{N}_p^k \bar{b}^p$$
$$= \delta_{jk} a^j \bar{N}_p^k \bar{b}^p$$
$$= \sum_{j=1}^m \sum_{p=1}^n \bar{N}_p^j a^j \bar{b}^p$$

Since $(L(v), w) = (v, L^*(w))$ for all $v \in V$ and $w \in W$, it follows that

$$\bar{N}_p^j = M_j^p$$
, i.e., $N_p^j = \bar{M}_j^p$,

or equivalently,

$$N = M^*$$

Adjoints of Linear Maps and Matrices (Part 5)

If E is a unitary basis of V and F is a unitary basis of W, L: V → W is a linear map, and M is a matrix that satisfies

L(E)=FM,

then

 $L^*(F) = EM^*$

イロン イロン イヨン イヨン 一日

Basic Properties of Adjoint Map

• If $L, L_1, L_2 : V \to W$ are linear maps and $c \in \mathbb{F}$, then

$$(L_1 + L_2)^* = L_1^* + L_2^*$$
$$(cL)^* = \bar{c}L^*$$
$$(L_1 \circ L_2)^* = L_2^* \circ L_1^*$$
$$(L^*)^* = L$$
$$(w, L(v)) = (L^*(w), v)$$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><10</td>15/26

)

Fundamental Subspaces of Adjoint Map

Let L : V → W be a map between inner produt spaces
 Then

$$\ker(L^*) = (\operatorname{image}(L))^{\perp} \tag{1}$$

$$\ker(L) = (\operatorname{image}(L^*))^{\perp}$$
 (2)

$$\mathsf{image}(L) = (\mathsf{ker}(L^*))^{\perp} \tag{3}$$

$$image(L^*) = (ker(L))^{\perp}$$
(4)

That

For any subspace S, (S[⊥])[⊥] = S
 For any linear map A, (A*)* = A
 imply that (2),(3),(4) follow directly from (1)

Proof that $\ker(L^*) = (\operatorname{image}(L))^{\perp}$

$$w \in \ker(L^*) \iff L^*(w) = 0$$

 $\iff \forall v \in V, (v, L^*(w)) = 0$
 $\iff \forall v \in V, (L(v), w) = 0$
 $\iff w \in (\operatorname{image}(L))^{\perp}$

<ロト < 部ト < 言ト < 言ト こ の Q (や 17/26

Geometric Description of a Linear Map and its Adjoint

Recall that if E is a subspace of V, then

$$V = E \oplus E^{\perp}$$

Therefore,

$$V = (\ker(L)) \oplus (\ker(L))^{\perp}$$

▶ It is easy to show that the restriction of *L* to $(\ker(L))^{\perp}$,

$$L: (\ker(L))^{\perp} \rightarrow \operatorname{image}(L)$$

is bijective

Equivalently, by (4),

$$L: image(L^*) \rightarrow image(L)$$

is bijective

Therefore,

$$\mathsf{rank}(L) = \mathsf{dim}(\mathsf{image}(L)) = \mathsf{dim}(\mathsf{image}(L^*)) = \mathsf{rank}(L^*)$$

Isometries

A map (not assumed to be linear) L: V → W, where V and W are normed vector spaces, is an isometry if for any v ∈ V,

$$|L(v)| = |v|$$

► Theorem: If V and W are inner product spaces and L : V → W is an isometry, then L is linear and satisfies for any v₁, v₂ ∈ V,

$$(L(v_1), L(v_2)) = (v_1, v_2)$$

- Lemma: $L: V \to W$ is an isometry if and only if $L^* \circ L = I_V$, i.e., L^* is a left inverse of L
- In particular, if L(v) = 0, then

$$v=L^*(L(v))=0$$

and therefore, $ker(L) = \{0\}$

• It follows that if $L: V \rightarrow W$ is an isometry, then

 $\dim(V) \leq \dim(W)$

Basic Properties of Isometries

- If L: V → W is an isometry and (v₁,..., v_n) is an unitary basis of V, then (L(v₁),..., L(v_n)) is an unitary set in W
- If $L_1 : V \to W$ and $L_2 : W \to X$ are unitary, then so is $L_2 \circ L_1 : V \to X$

Unitary Transformation

- If W = V, then an isometry L : V → V is called a unitary transformation
- If V is an inner product space, a linear transformation L : V → V is unitary, if for any v, w ∈ V, if any of the following equivalent statements hold:

$$(L(v), L(w)) = (v, w)$$
$$(L^*L(v), w) = (v, w)$$
$$L^* \circ L = I$$
$$L \text{ is invertible and } L^{-1} = L^*$$

Unitary Matrices

Let L: V → V be a unitary map
 If (u₁,..., u_n) is a unitary basis of V and L(u_k) = M^j_ku_j, then

$$\delta_{jk} = (u_j, u_k) = (L(u_j), L(u_k)) = (u_j, (L^* \circ L)(u_k)) = (u_j, (M^*M)_k^j u_i) = (M^*M)_k^j$$

 $M^*M = I$

• A matrix *M* is **unitary** if $M^*M = MM^* = I$

Examples of Unitary Matrices

- An n-by-n matrix is unitary if and only if its columns form a unitary basis of
 ⁿ
- A real 2-by-2 matrix is a unitary matrix with positive determinant if and only if it is of the form

$$\begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

For any $\theta^1, \theta^2 \in \mathbb{R}$

$$\begin{bmatrix} e^{i\theta^1} & 0 \\ 0 & e^{i\theta^2} \end{bmatrix}$$

More Properties of Unitary Matrices

Let U be a unitary matrix

$$\blacktriangleright \det(U^*) = \overline{\det(U)}$$

• Because $det(A^T) = det(A)$ and $det(\overline{A}) = \overline{det(A)}$

• If λ is an eigenvalue of U, then $|\lambda| = 1$

• Because if λ is an eigenvalue of U with eigenvector v, then

$$|\mathbf{v}| = |\mathbf{U}\mathbf{v}| = |\lambda\mathbf{v}| = |\lambda||\mathbf{v}|,$$

イロン イロン イヨン イヨン 一日

24 / 26

which implies $|\lambda| = 1$

Properties of unitary maps and matrices

- If L_1, L_2 are unitary maps, then so is $L_1 \circ L_2$
 - ► If M₁, M₂ are unitary matrices, then so is M₁M₂
- ▶ If *L* is unitary, then *L* is invertible and $L^{-1} = L^*$ is unitary
 - ▶ If *M* is unitary, then *M* is invertible and $M^{-1} = M^*$ is unitary

イロン イロン イヨン イヨン 一日

- The identity map is unitary
 - The identity matrix is unitary

Unitary Group

- Define the unitary group U(V) of a Hermitian vector space V to be the set of all unitary transformations
- Denote

$$U(n) = U(\mathbb{C}^n)$$

using the standard Hermitian inner product on \mathbb{C}^n

- Both satisfy the properties of an abstract group G
 - Any ordered pair (g₁, g₂) ∈ G × G uniquely determine a third, denoted g₁g₂ ∈ G
 - (Associativity) $(g_1g_2)g_3 = g_1(g_2g_3)$
 - ▶ (Identity element) There exists an element $e \in G$ such that ge = eg = g for any $g \in G$
 - Inverse of an element) For each g ∈ G, there exists an element g⁻¹ ∈ G such that gg⁻¹ = g⁻¹g = e
- U(n) is an example of a matrix group
- Both U(V) and U(n) are examples of Lie groups