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Self-Adjoint Maps and Symmetric Matrices

◮ Given a Hermitian vector space V , a linear map L : V → V is
self-adjoint if

L∗ = L

◮ A complex matrix M is Hermitian if

M∗ = M
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Eigenvalues of a Self-Adjoint Map are Real

◮ Let L : V → V be a hermitian linear map with basis (e1, · · · , en)
◮ If v is an eigenvector of L with eigenvalue λ, then

λv2 = (L(v), v)

= (v , L(v))

= (L(v), v)

= λv2

= λv2
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Eigenspaces of a Self-Adjoint Map are Orthogonal

◮ Suppose λ, µ are two different eigenvalues of a self-adjoint
operator L : V → V with eigenvectors v ,w respectively

◮ It follows that

0 = (L(v),w)− (v , L(w))

= (λv ,w)− (v , µw)

= (λ− µ)(v ,w) since µ ∈ R

◮ Since λ− µ ∕= 0, it follows that (v ,w) = 0
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Self-Adjoint Map Has Unitary Basis of Eigenvectors

◮ Theorem. Given a self-adjoint map L : V → V , there exists a
unitary basis of eigenvectors

◮ Corollary. Given a Hermitian matrix M, there exists a unitary
matrix U ∈ U(n) and real diagonal matrix D such that

M = UDU∗,
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Proof of Theorem

◮ Given a linear map L : V → V , by the Schur decomposition,
there exists a unitary basis (u1, . . . , un) such that

L(uk) = ukM
k
k + · · · unMn

k , for each 1 ≤ k ≤ n

◮ Equivalently, for any 1 ≤ k ≤ n and 1 ≤ j < k ,

(L(uk), uj) = 0

◮ If L is self-adjoint, then for any 1 ≤ k ≤ n and 1 ≤ j < k ,

0 = (L(uk), uj) = (uk , L
∗(uj)) = (uk , L(uj)) = (L(uj), uk),

which implies (L(uj), uk) = 0
◮ Therefore, for any 1 ≤ k ≤ n and 1 ≤ j < k ,

(L(uj), uk) = 0

◮ It follows that for each 1 ≤ k ≤ n,

L(uk) = Mk
k uk
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Proof of Corollary

◮ A self-adjoint matrix M defines a self-adjoint linear map

M : Fn → Fn

◮ By the Theorem, there exists a unitary basis (u1, . . . , un) of
eigenvectors of M with eigenvalues λ1, . . . ,λn respectively

◮ Let U be the matrix whose columns are u1, . . . , un,

U =

u1 · · · un



◮ If (e1, . . . , en) is the standard basis of Fn, then for 1 ≤ k ≤ n,

Uek = uk

◮ Therefore,

U∗MUek = U∗Muk = U∗(λkuk) = λek

◮ It follows that U∗MU is a diagonal matrix with λ1, . . . ,λn as the
diagonal entries
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Direct Proof of Corollary

◮ Given a square matrix M, by the Schur decomposition, there
exists a unitary matrix U such that

M = UTU∗,

where T is upper triangular
◮ If M is self-adjoint, then

UTU∗ = M = M∗ = (U∗)∗T ∗U∗ = UT ∗U∗

◮ Therefore,

T = U∗UTU∗U = U∗(UTU∗)U = U∗(UT ∗U∗)U = T ∗,

which implies T is self-adjoint
◮ Since T is upper triangular,

T j
k = 0, if j < k ≤ n

◮ Since T ∗ = T ,

T k
j = (T ∗)kj = T̄ j

k = 0, if j < k ≤ n

◮ It follows that T is diagonal
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Positive Definite Self-Adjoint Maps

◮ Let V be an inner product space

◮ A self-ajoint map L : V → V is positive definite if for any
v ∕= 0,

(L(v), v) > 0

◮ If L is a positive definite self-adjoint map, we write L > 0

◮ L > 0 if and only if the eigenvalues of L are all positive

◮ We write L ≥ 0 if the eigenvalues of L are all nonnegative

◮ The function Q : V × V → F given by

Q(v ,w) = (L(v), v)

is an inner product
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Powers and Roots of a Positive Definite
Self-Adjoint Map

◮ Let L be a self-adjoint map such that L ≥ 0 and (u1, . . . , un) be
a unitary basis of eigenvectors

◮ There is a unique self-adjoint map
√
L ≥ 0 such that

√
L ≥ 0 and

√
L ◦

√
L = L

◮ Let √
L(uk) =


λkuk

◮ If k is a nonnegative integer and L ≥ 0, then there is a unique
self-adjoint map L1/k such that

L1/k ≥ 0 and (L1/k) = L

◮ Let
L1/k(uj) = λ

1/k
j uj
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Singular Values of a Linear Map

◮ Let X and Y be inner product spaces (not necessarily of the
same dimension)

◮ Let L : X → Y be any linear map

◮ The map L∗L : X → X is self-adjoint, because for any
x1, x2 ∈ X ,

(L∗(L(x1)), x2)X = (L(x1), L(x2))Y = (x1, L
∗(L(x2)))X

◮ L∗L ≥ 0, because for any x ∈ X ,

(L∗L(x), x) = (L(x), L(x)) ≥ 0

◮ We can denote |L| =
√
L∗L

◮ The eigenvalues of |L| are called the singular values of L

◮ Singular values are always real and nonnegative

◮ Since ker L∗L = ker L, if k = dim ker L, then exactly k singular
values are zero
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Normal Form of a Linear Map (Part 1)

◮ Let X and Y be complex vector spaces such that dimX = m
and dimY = n

◮ Let L : X → Y be a linear map with rank r

◮ If dim ker L = k , then, by Rank Theorem, r + k = m

◮ Let (ur+1, . . . , um) be a unitary basis of ker L

◮ This can be extended to a unitary basis of eigenvectors of
|L| =

√
L∗L

◮ Therefore,
|L|(uj) = sjuj , 1 ≤ j ≤ m,

where s1, . . . , sm are the singular values of L

◮ Observe that

s1, . . . , sr > 0

sr+1 = · · · = sm = 0
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Normal Form of a Linear Map (Part 2)

◮ Let ṽj = L(uj), 1 ≤ j ≤ r

◮ The set {ṽ1, . . . , ṽr} is linearly independent because if

a1ṽ1 + · · ·+ ak ṽr = 0,

then
L(a1u1 + · · ·+ akur ) = a1ṽ1 + · · ·+ ak ṽr = 0

which implies that a1u1 + · · ·+ akur ∈ ker L and therefore

a1u1 + · · ·+ akur = br+1ur+1 + · · ·+ bmum,

which implies that a1 = · · · = ak = br+1 = · · · = bm = 0

◮ Moreover, if 1 ≤ i , j ≤ k , then sj ∕= 0 and therefore

(ṽi , ṽj) = (L(ui ), L(uj)) = (ui , (L
∗L)(uj)) = s2j (ui , uj) = s2j δij
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Normal Form for a Linear Map (Part 3)

◮ If
vj = s−1

j ṽj = s−1
j L(uj), 1 ≤ j ≤ k ,

then (v1, . . . , vr ) is a unitary basis of L(X ) ⊂ Y and therefore a
unitary set in Y

◮ This can be extend, using Gram-Schmidt, to a unitary basis
(v1, . . . , vn) of Y

◮ Therefore, there is a unitary basis (u1, · · · , um) of X and a
unitary basis (v1, . . . , vn) of Y such that

L(uj) =


sjvj if 1 ≤ j ≤ dim ker L

0 if j > dim ker L
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Normal Form for a Linear Map (Part 4)

◮

L(u1) · · · L(ur ) L(ur+1) · · · L(um)



=

v1 · · · vr vr+1 · · · vn

  D 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)


,

where D is the r -by-r diagonal matrix such that

D i
j =


sj if i = j

0 if i ∕= j

◮

L(a1u1 + · · ·+ amum)

=

v1 · · · vn

  D 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)





a1

...
am
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Singular Value Decomposition of Linear Map (Part
1)

◮ Let X ,Y be inner product spaces, where m = dim(X ) and
n = dim(Y )

◮ Let L : X → Y be a linear map with rank r

◮ Recall that
|L| = (L∗L)1/2

is a self-adjoint map with nonnegative eigenvalues

◮ The singular values s1, . . . , sr of L are defined to be the nonzero
eigenvalues of |L|

◮ Let Σ : Rm → Rm be the m-by-m diagonal matrix such that for
each 1 ≤ k ≤ m,

Σ(k) =


skek if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m
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Singular Value Decomposition of Linear Map (Part
2)

◮ There exists a unitary basis (e1, . . . , em) of X such that

|L|(ek) =

skek if 1 ≤ k ≤ r

0 if r + 1 ≤ k ≤ m

◮ Let V : Rm → X be the map such that for each 1 ≤ k ≤ m,

V (k) = ek

◮ There exists a unitary basis (f1, . . . , fn) of Y such that for each
1 ≤ j ≤ n,

fj = s−1
j L(ej), 1 ≤ j ≤ n

◮ Let W : Rm → Y be the map such that for each 1 ≤ j ≤ n,

W (j) = fj

◮ Then
L = W ◦ Σ ◦ V ∗ and |L| = VΣV ∗
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Singular Value Decomposition of a Complex Matrix

◮ If M is an n-by-m complex matrix with rank r and whose
positive singular values are s1, . . . , sr , then there are unitary
matrices P ∈ U(m) and Q ∈ U(n) such that

M = QSP ,

where

S =


D 0r×(m−r)

0(n−r)×r 0(n−r)×(m−r)



and D is the r -by-r diagonal matrix such that

D i
j =


sj if i = j

0 if i ∕= j
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Polar Decomposition of Linear Map

◮ Let X and Y be inner product spaces such that
dim(X ) = dim(Y )

◮ Consider a linear map
L : X → Y

◮ Then there exists a unitary map U : X → Y such that

L = U|L|

◮ Proof: By the singular value decomposition of L,

L = WΣV ∗ = (WV ∗)VΣV ∗ = U|L|
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