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Dual Vector Space

▶ Let V be an n-dimensional real vector space
▶ The dual vector space is the vector space V ∗ of all linear

functions on V
▶ If ℓ ∈ V ∗, then it is a function

ℓ : V → F

such that if a, b ∈ F and v ,w ∈ V , then

ℓ(av + bw) = aℓ(v) + bℓ(w)

▶ For each ℓ1, ℓ2 ∈ V ∗ and a1, a2 ∈ F, the function a1ℓ
1 + a2ℓ

2 is
also linear and therefore an element of V ∗

▶ Therefore, V ∗ is a vector space
▶ For convenience, we will denote the value of ℓ with input v by

any of the following:

⟨ℓ, v⟩ = ⟨v , ℓ⟩ = ℓ(v)

▶ An element of V ∗ can be called a dual vector, covector, or
1-tensor
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Covector with respect to a Basis

▶ Let (e1, . . . , em) be a basis of V

▶ Any ℓ ∈ V is uniquely determined by its values for the basis
elements

▶ If
ℓ(e1) = b1, . . . , ℓ(em) = bm,

then for any v = e1a
1 + · · ·+ ama

m,

ℓ(v) = ℓ(e1a
1 + · · ·+ ama

m)

= ℓ(e1)a
1 + · · ·+ ℓ(em)a

m

= b1a
1 + · · ·+ bma

m
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Dual Basis

▶ Let (e1, . . . , em) be a basis of V

▶ For each 1 ≤ j ≤ m, there is an element ϵi ∈ V ∗ given by

⟨ej , ϵi ⟩ = δij

▶ In other words, if v = e1a
1 + · · ·+ ema

m, then

⟨v , ϵi ⟩ = ⟨e1a1 + · · ·+ ema
m, ϵi ⟩

= ⟨e1, ϵi ⟩a1 + · · ·+ ⟨em, ϵm⟩am

= ai

▶ In particular, for any v ∈ V ,

v = e1⟨ϵ1, v⟩+ · · ·+ em⟨ϵm, v⟩

▶ (ϵ1, . . . , ϵm) is called the dual basis of the basis (e1, . . . , em)
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Dual Basis is Basis of Dual Vector Space

▶ Given a basis (e1, . . . , em) of V and its dual basis (ϵ1, . . . , ϵm),
there is a linear map

V ∗ → Fn

ℓ 7→ ⟨ℓ, e1⟩ϵ1 + · · ·+ ⟨ℓ, em⟩ϵm

▶ Conversely, there is a linear map

Fn → V ∗

(b1, . . . , bn) 7→ b1ϵ
1 + · · ·+ bmϵ

m

▶ These two maps are inverses of each other

▶ Therefore, the maps are isomorphhism

▶ It follows that
dim(V ∗) = dim(V )

and (ϵ1, . . . , ϵm) is a basis of V ∗

6 / 17



Dual of Dual Vector Space

▶ The dual of V ∗ is the space of all linear functions ν : V ∗ → F
▶ There is a natural (basis-independent) map

F : V → V ∗∗,

where for each v ∈ V , F (v) : V ∗ → F is given by

⟨F (v), ℓ⟩ = ⟨v , ℓ⟩

▶ If F (v) = 0, then for any ℓ ∈ V ∗,

⟨v , ℓ⟩ = ⟨F (v), ℓ⟩ = 0

and therefore v = 0

▶ It follows that F is a basis-independent isomorphism

▶ We will denote F (v) by simply v
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Dual or Transpose of a Linear Map

▶ Let L : X → Y be a linear map
▶ There is a naturally defined dual linear map

L∗ : Y ∗ → X ∗,

where for any η ∈ Y ∗,

L∗(η) = η ◦ L

▶ In other words, for any η ∈ Y ∗, L∗(η) ∈ X ∗ is the function
where for any x ∈ X ,

⟨L∗(η), x⟩ = ⟨η, L(x)⟩

▶ L∗ is called the dual or transpose of L
▶ If L : X → Y and M : Y → Z are linear maps, then

(M ◦ L)∗ = L∗ ◦M∗

▶ (L∗)∗ = L
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Tensors

▶ A 0-tensor is a scalar

▶ Given k > 0, a k-tensor on a vector space V is a k-linear
function on V ,

θ : V × · · · × V → F

▶ For each 1 ≤ j ≤ k , vectors v1, . . . , vk ,wj ∈ V , and scalars
aj , bj ∈ F,

θ(v1, . . . , vj−1, , a
jvj + bjwj , vj+1, . . . , vk)

= ajθ(v1, . . . , vj−1, , vj , vj+1, . . . , vk)

+ bjθ(v1, . . . , vj−1, ,wj , vj+1, . . . , vk)

▶ The space of all k-tensors on V is denoted
⊗k V ∗

▶ Examples
▶ An inner product is a 2-tensor
▶ An element of ΛmV ∗ (where dim(V ) = m) is an m-tensor
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Symmetric and Antisymmetric Tensors

▶ A k-tensor θ is symmetric if for any permutation σ ∈ Sk ,

θ(vσ(1), . . . , vσ(k)) = θ(v1, . . . , vk)

▶ The space of all symmetric k-tensors is denoted SkV ∗

▶ A k-tensor θ is antisymmetric if for any permutation σ ∈ Sk ,

θ(vσ(1), . . . , vσ(k)) = ϵ(σ)θ(v1, . . . , vk)

▶ The space of all antisymmetric k-tensors is denoted ΛkV ∗

▶ An inner product is a symmetric 2-tensor

▶ An element of ΛmV ∗ is an antisymmetric m-tensor
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2-Tensor With Respect to Basis

▶ Let B : V × V → R be a symmetric 2-tensor
▶ Let (e1, . . . , em) be a basis of V
▶ For each 1 ≤ i , j ≤ m, let

Mij = B(ei , ej)

▶ If v = eja
j and w = ekb

k , then

B(v ,w) = B(eja
j , ekb

k)

= ajbkMjk

▶ Therefore, with respect to a basis of V , the bilinear form B is
uniquely determined by the matrix M and

B(Ea,Eb) = aTMb

▶ If B is symmetric, then

Mij = B(ei , ej) = B(ej , ei ) = Mji
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Quadratic Form on Real Vector Space

▶ A function Q : V → R is a quadratic form if with respect to a
basis (e1, . . . , em),

Q(eja
j) = P(a1, . . . , an),

where P is a homogeneous quadratic polynomial, i.e, every term
of P has degree 2

▶ In particular, there exists a symmetric matrix M such that

Q(Ea) = Q(eja
j) = Mjka

jak = aTMa = B(Ea,Eb),

where

Mjk =
1

2

∂2Q

∂aj∂ak

▶ If B is a symmetric 2-tensor, the function

Q(v) = B(v , v)

is a quadratic form
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Equivalence of Quadratic Forms and Symmetric
2-Tensors

▶ Let Q : V → R be a quadratic form such that with respect to a
basis (e1, . . . , em) of V ,

Q(e1a
1 + · · ·+ ema

m) = ajakMjk ,

for a symmetric matrix M

▶ Define B ∈ S2V ∗ by setting

B(ej , ek) = Mjk

▶ Then if v = e1a
1 + · · ·+ ema

m, then

B(v , v) = B(eja
j , eka

k)

= ajakB(ej , ek)

= ajakMjk

= Q(v)
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Signature of a Symmetric Matrix

▶ Recall that if M is a real symmetric matrix, there exists an
orthogonal matrix U such that

D = UTMU

is diagonal and the diagonal entries of D are the eigenvalues of
M

▶ The signature of M is defined to be (p, q, r), where p is the
number of positive eigenvalues, q is the number of negative
eigenvalues, and r is the number of zero eigenvalues

▶ Since p + q + r = dim(V ), it suffices to specify only (p, q)
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Normal Form of a Symmetric Matrix

▶ Let d1, . . . , dm be the eigenvalues of M

▶ Let E be the matrix whose diagonal entries are

ek =

{
|dk |−1/2 if dk ̸= 0

0 if dk = 0

and
V = UE

▶ Then
V TMV = ETUTMUE = EDE = H,

where H is a diagonal matrix, where

Hkk


1 if dk > 0

−1 if dk < 0

0 if dk = 0
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Tensors on Complex Vector Space

▶ Let V be a complex vector space
▶ A (1, 0)-tensor is a linear function ℓ : V → C, i.e.,

ℓ(av + bw) = aℓ(v) + bℓ(w)

▶ Let V (1,0) denote the space of all (1, 0)-tensors on V
▶ A (0, 1)-tensor is a conjugate linear function ℓ : V → C, i.e.,

ℓ(av + bw) = āℓ(v) + b̄ℓ(w)

▶ Let V (0,1) denote the space of all (0, 1)-tensors on V
▶ Both V (1,0) and V (0,1) are complex vector spaces
▶ If ℓ is a (1, 0)-tensor, then ℓ̄ is a (0, 1)-tensor and therefore the

map

V (1,0) → V (0,1)

ℓ 7→ ℓ̄

is a conjugate linear isomorphism
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(k , l)-tensors on Complex Vector Space

▶ Given nonnegative integers k , l such that k + l ≤ dim(V ), a
function

V × · · · × V → C
(v1, . . . , vk , vk+1, · · · , vk+l)rightarrowT (v1, . . . , vk , vk+1, . . . , vk+l)

is a (k, l)-tensor if for each 1 ≤ i ≤ k , the function

vi 7→ T (v1, . . . , vi−1, vi , . . . , vk , . . . , vk+l)

is linear and for each k + 1 ≤ i ≤ l , the function

vi 7→ T (v1, . . . , vk , . . . , vi−1, vi , . . . , vk+l)

is conjugate linear
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