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(1, 0)-Tensors and (0, 1)-Tensors on Complex
Vector Space

▶ Let V be a complex vector space
▶ A (1, 0)-tensor is a linear function ℓ : V → C, i.e.,

ℓ(av + bw) = aℓ(v) + bℓ(w)

▶ Let V (1,0) denote the space of all (1, 0)-tensors on V
▶ A (0, 1)-tensor is a conjugate linear function ℓ : V → C, i.e.,

ℓ(av + bw) = āℓ(v) + b̄ℓ(w)

▶ Let V (0,1) denote the space of all (0, 1)-tensors on V
▶ Both V (1,0) and V (0,1) are complex vector spaces
▶ If ℓ is a (1, 0)-tensor, then ℓ̄ is a (0, 1)-tensor and therefore the

map

V (1,0) → V (0,1)

ℓ 7→ ℓ̄

is a conjugate linear isomorphism
3 / 45



(k , l)-tensors on Complex Vector Space

▶ Given nonnegative integers k , l such that k + l ≤ dim(V ), a
function

V × · · · × V → C
(v1, . . . , vk , vk+1, · · · , vk+l)rightarrowT (v1, . . . , vk , vk+1, . . . , vk+l)

is a (k, l)-tensor if for each 1 ≤ i ≤ k , the function

vi 7→ T (v1, . . . , vi−1, vi , . . . , vk , . . . , vk+l)

is linear and for each k + 1 ≤ i ≤ l , the function

vi 7→ T (v1, . . . , vk , . . . , vi−1, vi , . . . , vk+l)

is conjugate linear
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Sesquilinear and Quadratic Forms on Complex
Vector Space

▶ A sesquilinear form on a complex vector space V is an element
of V 1,1

▶ I.e., a function
B : V × V → C

with the following properties: For all v , v1, v2 ∈ V ,

B(v1 + v2, v) = B(v1, v) + B(v2, v)

B(v , v1 + v2) = B(v , v1) + B(v , v2)

B(cv1, v2) = cB(v1, v2)

B(v1, cv2) = c̄B(v1, v2)

▶ A quadratic form is a fumction Q : V → C for which there
exists a sesquilinear form B such that for any v ∈ V ,

Q(v) = B(v , v)
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Hermitian Forms

▶ A sesquilinear form H is hermitian if for any v1, v2 ∈ V ,

H(v2, v1) = H(v1, v2)

▶ In particular, for any v ∈ V , setting v1 = v2 = v gives

H(v , v) = H(v , v),

which implies H(v , v) ∈ R
▶ Therefore, the quadratic form associated with a hermitian form

H is a real-valued function on V ,

Q : V → R
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Tensor Product of (1, 0)-Tensor with (0, 1)-Tensor

▶ Given θ1 ∈ V (1,0) and θ2 ∈ V (0,1), define the function

θ1 ⊗ θ2 : V × V → C

given by
(θ1 ⊗ θ2)(v1, v2) = ⟨θ1, v1⟩⟨θ2, v2⟩

▶ Observe that θ1 ⊗ θ2 is sesquilinear because θ1 is linear and θ2 is
conjugate linear

▶ The (1, 1)-tensor

θ1 ⊗ θ2 + θ
2 ⊗ θ

1

is hermitian
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Sesquilinear Forms With Respect to Basis

▶ Let (e1, . . . , em) be a basis of V and (ϵ1, . . . , ϵm) ⊂ V (1,0) be the
dual basis

▶ Let B ∈ V (1,1) and for each 1 ≤ i , j ≤ m,

Mij = B(ei , ej)

▶ For any v = eia
i and w = ejb

j ,

B(v ,w) = B(eia
i , ejb

j)

= ai b̄jB(ei , ej)

= ai b̄jMij

▶ Conversely, any matrix M ∈ gl(m,C) defines a sesquilinear form
using the same formula

▶ This defines a bijective linear map V (1,1) → gl(m,C)
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Basis of V (1,1)

▶ On the other hand,

(ϵi ⊗ ϵ̄j)(v ,w) = (ϵi ⊗ ϵ̄j)(eka
k , elb

l)

= akbl⟨ϵi , ek⟩⟨ϵj , el⟩
= akblδkl

= aibj

▶ Therefore, for any v ,w ∈ V ,

B(v ,w) = Mij(ϵ
i ⊗ ϵj)(v ,w),

i.e.,
B = Mij(ϵ

i ⊗ ϵj)

▶ Moreover, B = 0 ⇐⇒ ∀1 ≤ i , j ≤ m, Mij = 0
▶ It follows that

{ϵi ⊗ ϵj : 1 ≤ i , j ≤ m}
is a basis of V (1,1)
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Change of Basis Formula for Hermitian Form

▶ H ∈ V (1,1) be hermitian
▶ Given a basis (e1, . . . , em) of V , let

Mij = H(ei , ej)

▶ Given a basis (f1, . . . , fm) of V , let

Nij = H(fi , fj)

▶ If fi = ejA
j
i , then

Nij = H(fi , fj)

= H(ekA
k
i , elA

l
j)

= Ak
i Ā

l
jH(ek , el)

= Ak
i Mkl Ā

l
j ,

i.e.,
N = AMĀT = AMA∗
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Normal Form of Hermitian Form (Part 1)

▶ Recall that if a matrix M is hermitian, there exists a unitary
matrix U such that D = U∗MU is diagonal and the diagonal
entries (eigenvalues of M) are real

▶ Let E be the diagonal matrix whose diagonal entries are

Ekk =

{
|Dkk |−1/2 if Dkk ̸= 0

1 if Dkk = 0

▶ Observe that E∗DE = EDE is a diagonal matrix where

(E∗DE )kk =


1 if Dkk > 0

−1 if Dkk < 0

0 if Dkk = 0

▶ If V = UE and N = V ∗MV , then

N = V ∗MV = E∗U∗MUE = E∗DE
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Normal Form of Hermitian Form (Part 2)

▶ With respect to the basis (f1, . . . , fm) where

fj = eiN
i
j ,

we get

H(fi , fj) =


δij if Dii > 0

−δij if Dii < 0

0 if Dii = 0
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Signature of Hermitian Form

▶ The signature of a diagonal matrix is (a, b, c), where a is the
number of positive diagonal elements, b is the number of
negative diagonal elements, and c is the number of zero
diagonal elements

▶ The signature of a hermitian matrix is (a, b, c), where a is the
number of positive eigenvalues, b is the number of negative
eigenvalues, and c is the number of zero eigenvalues
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Sylvester’s Law of Inertia

▶ Let H ∈ V (1,1) be a hermitian form on a complex vector space V

▶ Let (e1, . . . , en) and (f1, . . . , fn) be bases of V that both
diagonalize H

▶ Let M be the diagonal matrix given by

Mij = H(ei , ej)

▶ Let N be the hermitian matrix given by

Nij = H(fi , fj)

▶ Theorem. M and N have the same signature

▶ We can therefore define the signature of a hermitian form to be
the signature of the hermitian matrix associated with a basis of
V
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Proof (Part 1)

▶ We can assume that M and N are diagonal where each diagonal
element is 1, −1, or 0

▶ Let r be the number of positive values in {M11, . . . ,Mmm}
▶ By permuting the basis vectors e1, . . . , em, we can assume that

M11 = H(e1, e1), . . . ,Mrr = H(er , er )

are all positive

▶ Let R be the subspace spanned by (e1, . . . , er )

▶ Let s be the number of positive values in {N11, . . . ,Nmm}
▶ By permuting the basis vectors f1, . . . , fm, we can assume that

N11 = H(f1, f1), . . . ,Nrr = H(fs , fs)

are all positive

▶ Let S be the subspace spanned by {f1, . . . , fs}
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Proof (Part 2)

▶ Define the projection map

P : V → R

v = e1v
1 + · · ·+ env

n 7→ e1v
1 + · · ·+ erv

r

▶ Let PS : S → R be the restriction of P to S
▶ Let Q : V → R be the quadratic form where

Q(v) = H(v , v)

▶ On one hand, if v ∈ S , then v = f1b
1 + · · ·+ fsb

s and

Q(v) = Q(f1b
1 + · · ·+ fsb

2) = β1(b
1)1 + · · ·+ βs(b

s)2 > 0

▶ On the other hand, if v ∈ kerPS , then

v = er+1a
r+1 + · · ·+ ena

n

and therefore

Q(v) = αr+1(a
r+1)2 + · · ·+ αn(a

n)2 ≤ 0
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Proof (Part 3)

▶ It follows that ker(PS) = {0} and therefore
s = dim(S) ≤ r = dim(R)

▶ The same argument with the bases switched implies that
r = dim(R) ≤ s = dim(S)

▶ The same argument proves that the number of negative values
in {M11, . . . ,Mmm} is equal to the number of negative values in
{N11, . . . ,Nmm}

▶ It follows that the signatures of M and N are equal
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Bilinear and Sesquilinear Forms as a Linear Maps

▶ If B is a bilinear form on a real vector space V , then it defines a
linear map

LB : V → V ∗,

where for each v ,w ∈ V ,

⟨LB(v),w⟩ = B(v ,w)

▶ If B is a sesquilinear form on a complex vector space V , then it
defines a linear map

LB : V → V (0,1),

where for each v ,w ∈ V ,

⟨LB(v),w⟩ = B(v ,w)

and a conjugate linear map

RB : V → V (1,0),

where for each v ,w ∈ V ,

⟨w ,RB(v)⟩ = B(w , v)
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Linear Map of Bilinear or Sesquilinear Form With
Respect to Basis

▶ Let (e1, . . . , em) be a basis of V and (ϵ1, . . . , ϵm) be the dual
basis

▶ If Mij = B(ei , ej), then

⟨ej , LB(ei )⟩ = B(ei , ej) = Mij

▶ Therefore, LB(ei ) = Mijϵ
j

▶ It follows that if v = eia
i ∈ ker(LB), then

0 = LB(v) = LB(eia
i ) = LB(ei )a

i = (Mija
i )ϵj ,

i.e.,
Ma = 0
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Degenerate and Nondegenerate Bilinear Forms

▶ A bilinear or sesquilinear form B : V × V → R is degenerate if
there exists v ̸= 0 such that for any w ∈ V ,

B(v ,w) = 0,

i.e.,
LB(v) = 0

▶ A bilinear form B on a real vector space V is nondegenerate if
it is not degenerate, i.e.,

ker(LB) = {0},

or, equivalently,
LB : V → V ∗

is an isomorphism

▶ It follows that B is nondegenerate if and only if M is an
invertible matrix
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Signature of Nondegenerate Symmetric or
Hermitian Form

▶ Recall that if an m-by-m symmetric or hermitian matrix M has
signature (p, q), then

dim(ker(M)) = m − p − q

▶ It follows that M is invertible if and only if p + q = m

▶ It follows that a symmetric or hermitian form H is
nondegenerate if and only if the its signature (p, q) satisfies

p + q = m

21 / 45



Different Notation Conventions for Hermitian Form

▶ We are using the following convention:

B(cv ,w) = cB(v ,w)

B(v , cw) = c̄B(v ,w)

▶ Some use the following convention:

B(cv ,w) = c̄B(v ,w)

B(v , cw) = cB(v ,w)

▶ When reading a paper or book, look carefully to see which
convention is used
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Cayley-Hamilton Theorem

▶ Recall that the characteristic polynomial of a square matrix A is

p(x) = det(A− xI )

▶ Given any polynomial

p(x) = a0 + a1x + · · ·+ anx
n,

and square matrix M, we can define

p(M) = a0I + a1M + · · ·+ anM
n

▶ Theorem: If p is the characteristic polynomial of a square
matrix A, then

p(M) = 0
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Wrong Proof

▶ Since p(x) = det(A− xI ),

p(A) = det(A− AI ) = 0
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Characteristic Polynomial

▶ Recall that if A is a square polynomial over C, its characteristic
polynomial is

pA(x) = det(A− xI ) = (λ1 − x) · · · (λn − x),

where λ1, . . . , λn are the eigenvalues of A, counting multiplicities

▶ Therefore, for each eigenvalue λk ,

pA(λk) = 0

25 / 45



Polynomial Function of Diagonal Matrix (Part 1)

▶ Given a polynomial

p(x) = a0 + a1x + · · ·+ akx
k ,

and a diagonal matrix,

D =


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

 ,

let

p(D) = a0I + a1D + · · ·+ anD
n
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Polynomial Function of Diagonal Matrix (Part 2)

▶ Therefore,

p(D)

= a0I + a1


λ1 0 · · · 0
0 λ2 · · · 0
...

...
...

0 0 · · · λn

+ · · ·+ an


λn
1 0 · · · 0
0 λn

2 · · · 0
...

...
...

0 0 · · · λ2
n


=

a0 + a1λ1 + · · ·+ anλ
n
1 · · · 0

...
...

...
0 · · · a0 + a1λn + · · ·+ anλ

n
n



=


p(λ1) 0 · · · 0
0 p(λ2) · · · 0
...

...
...

0 0 · · · p(λn)
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Proof of Cayley-Hamilton For Diagonal Matrix

▶ Therefore,

pD(D) =


pD(λ1) 0 · · · 0

0 pD(λ2) · · · 0
...

...
...

0 0 · · · pD(λn)



=


0 0 · · · 0
0 0 · · · 0
...

...
...

0 0 · · · 0
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Cayley-Hamilton For Diagonalizable Matrix (Part
1)

▶ If λ1, . . . , λn are the eigenvalues of A, then since

0 = pA(λk) = det(A− λk I )

▶ If A is diagonalizable, then there is an invertible matrix M such
that

A = MDM−1,

where

D =


λ1 0 · · · 0
0 λ1 · · · 0
...

...
...

0 0 · · · λn

 ,
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Cayley-Hamilton For Diagonalizable Matrix (Part
2)

▶ Observe that for each positive integer k ,

(MDM−1)k = (MDM−1) · · · (MDM−1)

= MD(M−1M) · · ·D(M−1M)DM−1

= MDkM−1

▶ Observe that

pA(x) = det(A− xI )

= det(MDM−1 −M(xI )M−1)

= (det(M)) det(D − xI )(det(M−1)

= det(D − xI ) = pD(x)

▶ Therefore,

pA(A) = a0I + a1A+ · · ·+ anA
n

= a0MIM−1 + a1MDM−1 + · · ·+ an(MDM−1)n

= M(a0I + a1D + · · ·+ anD
n)M−1

= MpD(D)M−1

= 0
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Proof of Cayley-Hamilton Using Analysis

▶ For any square matrix A, there exists a sequence of
diagonalizable matrices that converges to A

▶ The map

gl(n,F)× gl(n,F) → gl(n,F)
(A,B) 7→ pA(B)

is continuous

▶ Therefore,
pA(A) = lim

k→∞
pAk

(Ak) = 0
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Abstract Cayley-Hamilton Formula

▶ Recall the characteristic polynomial of a linear map A : V → V
is given by

pA(x) = det(A−xI ) = (−1)n(x−λ1) · · · (x−λn) = a0+a1x+· · ·+anx
n,

where λ1, . . . , λn are the eigenvalues of A, counting multiplicities

▶ Then

pA(A) = (−1)n(A−λ1) · · · (A−λn) = a0I +a1A+ · · ·+anA
n = 0

▶ Since pA(A) is a linear map from V to V , this is equivalent to
saying that for any v ∈ V ,

pA(A)v = 0
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Proof Using Schur Decomposition (Part 1)

▶ Let A : V → V have eigenvalues λ1, . . . , λn, counting
multiplicities

▶ Then there exists a basis (e1, . . . , en) of V such that for each
1 ≤ k ≤ n,

A(ek) = M1
k e1 + · · ·+Mk

k ek ,

where Mk
k = λk

▶ Let Ek be the span of {e1, . . . , ek}
▶ Observe that A(Ek) ⊂ Ek

▶ Since

(A− λk I )ek = M1
k e1 + · · ·+Mk−1

k ek−1 + (Mk
k − λk)ek

= M1
k e1 + · · ·+Mk−1

k ek−1

∈ Ek−1,

it follows that
(A− λk I )(Ek) ⊂ Ek−1
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Proof Using Schur Decomposition (Part 2)

▶ Therefore, for any v ∈ V = En,

(A− λnI )v ∈ En−1

(A− λn−1I )(A− λnI )v ∈ En−2

...
...

(A− λ2I ) · · · (A− λnI )v ∈ E1

(A− λ1I )(A− λ2I ) · · · (A− λnI )v = 0

▶ Therefore, for any v ∈ V ,

pA(A)v = (A− λ1I ) · · · (A− λnI )v = 0

▶ It follows that pA(A) = 0
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Spectral Mapping Theorem

▶ Given a polynomial p and a subset S ⊂ C, let

p(S) = {p(z) : z ∈ S}

▶ Let V be a complex vector space and L : V → V be a linear map

▶ The spectrum of L, denoted σ(L), is the set of all eigenvalues of
L, not counting multiplicity

▶ Theorem. For each linear map L : V → V and polynomial p,

σ(p(L)) = p(σ(L))

▶ Corollary. p(L) is invertible if and only if 0 /∈ p(σ(L))
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p(σ(L)) ⊂ σ(p(L))

▶ If v ∈ V is an eigenvector of L with eigenvalue λ, then

Lv = λv

L2v = L(Lv) = L(λv) = λ2v

Lkv = λkv

▶ Therefore, if p(x) = a0 + a1x + · · ·+ akx
k , then

p(L)v = (a0 + a1L+ · · ·+ akL
k)v

= a0v + a1Lv + · · ·+ akL
kv

= a0 + a1λv + · · ·+ akλ
kv

= p(λ)v

▶ It follows that for each eigenvalue λ of L,

p(λ) ∈ σ(p(L))

and therefore
p(σ(L)) ⊂ σ(p(L))
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σ(p(L)) ⊂ p(σ(L)) (Part 1)

▶ Let µ ∈ σ(p(L)) and v be a corresponding eigenvector

▶ Let q(z) = p(z)− µ, which implies

q(L) = p(L)− µI

▶ Then q(L) : V → V is not invertible, because

q(L)v = p(L)v − µv = 0

▶ By the Fundamental Theorem of Algebra, q can be factored

q(z) = ak(z − z1) · · · (z − zk),

where z1, . . . , zk are the roots of q, counted with multiplicity

▶ Therefore, q(L) = ak(L− z1) · · · (L− zk)
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σ(p(L)) ⊂ p(σ(L)) (Part 2)

▶ Since
q(L) = ak(L− z1I ) · · · (L− zk I )

is not invertible, at least one of the factors L− zj I is not
invertible

▶ It follows that zj ∈ σ(L)

▶ Since
p(zj) = q(zj) + µ = µ ∈ σ(p(L)),

it follows that for each µ ∈ σ(p(L)), there exists λ ∈ σ(L) such
that

p(λ) = µ

▶ Therefore, σ(p(L)) ⊂ p(σ(L))
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Example of Nilpotent Matrix

▶ Consider the following example:

M0 =

[
0 1
0 0

]
▶ Since

det(M0 − λI ) = det

([
−λ 1
0 −λ

])
= λ2,

the only eigenvalue of M0 is 0
▶ On the other hand, v is an eigenvector if and only if[

0
0

]
= M0v =

[
0 1
0 0

] [
v1

v2

]
=

[
v2

0

]
▶ Therefore, the eigenspace for λ = 1 is only 1-dimensional
▶ On the other hand,

M2
0 =

[
0 1
0 0

] [
0 1
0 0

]
=

[
0 0
0 0

]
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Another Nilpotent Matrix

▶ Consider the following example:

M0 =

0 1 0
0 0 1
0 0 0


M2

0 =

0 1 0
0 0 1
0 0 0

0 1 0
0 0 1
0 0 0

 =

0 0 1
0 0 0
0 0 0


M3

0 = M2
0M0 =

0 0 1
0 0 0
0 0 0

0 1 0
0 0 1
0 0 0

 =

0 0 0
0 0 0
0 0 0
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Example

▶ Consider the following example:

Mλ =

λ 1 0
0 λ 1
0 0 λ


Mλ − λI =

0 1 0
0 0 1
0 0 0


(Mλ − λI )2 =

0 0 1
0 0 0
0 0 0


(Mλ − λI )3 =

0 0 0
0 0 0
0 0 0
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Diagonalizable Example

▶ On the other hand, if λ1, λ2, λ3 are distinct, then

M =

λ1 1 0
0 λ2 1
0 0 λ3


is diagonalizable
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Abstract Description of Nilpotent Matrix

▶ If (e1, e2, e3) is the standard basis of R3, then

M0e1 = e2

M0e2 = e3

M0e3 = 0

and

(Mλ − λI )e1 = e2

(Mλ − λI )e2 = e3

Mλ − λI )e3 = 0
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Generalized Eigenspaces (Part 1)

▶ Consider a linear map L : V → V

▶ v ∈ V is a generalized eigenvector of L for the eigenvalue λ if
there exists k ∈ Z+ such that

(L− λI )kv = 0

▶ The generalized eigenspace of λ is the set Eλ of all generalized
eigenvectors along with 0,

Eλ =
⋃
k≥1

ker((L− λI )k)

▶ This is a nested sequence of subspaces

ker(L− λI ) ⊂ ker((L− λI )2) ⊂ · · ·
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Generalized Eigenspaces (Part 2)

▶ The sequence cannot be infinite and therefore there exists k
such that

ker((L− λI )k) = ker((L− λI )k+1)

▶ Therefore, if v ∈ ker(L− λI )k+l+1, then

(L− λI )lv ∈ ker(L− λI )k+1 = ker(L− λI )k ,

which implies

(L− λI )k+lv = (L− λI )k(L− λI )lv = 0

▶ So
v ∈ ker(L− λI )k+l+1 =⇒ v ∈ ker(L− λI )k+l

▶ It follows that if

ker((L− λI )k) = ker((L− λI )k+1),

then for all j ≥ 0

ker((L− λI )k) = ker((L− λI )k+j)
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