MA-GY 7043: Linear Algebra II

Complex Tensors Symmetric and Hermitian Forms Cayley-Hamilton Theorem Spectral Mapping Theorem Nilpotent Matrices Generalized Eigenspaces

Deane Yang

Courant Institute of Mathematical Sciences New York University

April 29, 2025

イロト イヨト イヨト イヨト 二日

Outline I

(1, 0)-Tensors and (0, 1)-Tensors on Complex Vector Space

- Let V be a complex vector space
- A (1,0)-tensor is a linear function $\ell: V \to \mathbb{C}$, i.e.,

$$\ell(av + bw) = a\ell(v) + b\ell(w)$$

- Let $V^{(1,0)}$ denote the space of all (1,0)-tensors on V
- ▶ A (0,1)-tensor is a conjugate linear function $\ell: V \to \mathbb{C}$, i.e.,

$$\ell(av + bw) = \bar{a}\ell(v) + \bar{b}\ell(w)$$

- Let $V^{(0,1)}$ denote the space of all (0,1)-tensors on V
- ▶ Both $V^{(1,0)}$ and $V^{(0,1)}$ are complex vector spaces
- If ℓ is a (1,0)-tensor, then $\overline{\ell}$ is a (0,1)-tensor and therefore the map

$$V^{(1,0)} o V^{(0,1)} \ \ell \mapsto \overline{\ell}$$

is a conjugate linear isomorphism

3 / 45

・ロ と ・ 四 と ・ 目 と ・ 目 ・

(k, l)-tensors on Complex Vector Space

► Given nonnegative integers k, l such that k + l ≤ dim(V), a function

 $V \times \cdots \times V \to \mathbb{C}$ $(v_1, \dots, v_k, v_{k+1}, \cdots, v_{k+l}) rightarrow T(v_1, \dots, v_k, v_{k+1}, \dots, v_{k+l})$ is a (k, l)-tensor if for each $1 \le i \le k$, the function $v_i \mapsto T(v_1, \dots, v_{i-1}, v_i, \dots, v_k, \dots, v_{k+l})$

is linear and for each $k + 1 \le i \le l$, the function

$$v_i \mapsto T(v_1, \ldots, v_k, \ldots, v_{i-1}, v_i, \ldots, v_{k+l})$$

is conjugate linear

4 ロ ト 4 部 ト 4 書 ト 4 書 ト 書 の Q ()
4 / 45

Sesquilinear and Quadratic Forms on Complex Vector Space

- A sesquilinear form on a complex vector space V is an element of V^{1,1}
- ▶ I.e., a function

$$B: V \times V \to \mathbb{C}$$

with the following properties: For all $v, v_1, v_2 \in V$,

$$B(v_1 + v_2, v) = B(v_1, v) + B(v_2, v)$$

$$B(v, v_1 + v_2) = B(v, v_1) + B(v, v_2)$$

$$B(cv_1, v_2) = cB(v_1, v_2)$$

$$B(v_1, cv_2) = \bar{c}B(v_1, v_2)$$

A quadratic form is a function Q : V → C for which there exists a sesquilinear form B such that for any v ∈ V,

$$Q(v) = B(v, v)$$

イロン イロン イヨン イヨン 二日

Hermitian Forms

A sesquilinear form H is **hermitian** if for any $v_1, v_2 \in V$,

$$H(v_2,v_1)=\overline{H(v_1,v_2)}$$

▶ In particular, for any $v \in V$, setting $v_1 = v_2 = v$ gives

$$H(v,v)=\overline{H(v,v)},$$

which implies $H(v, v) \in \mathbb{R}$

Therefore, the quadratic form associated with a hermitian form H is a real-valued function on V,

$$Q: V \to \mathbb{R}$$

6 / 45

(ロ) (部) (注) (注) (こ) ()

Tensor Product of (1, 0)-Tensor with (0, 1)-Tensor

• Given $\theta^1 \in V^{(1,0)}$ and $\theta^2 \in V^{(0,1)}$, define the function

 $\theta^1 \otimes \theta^2 : V \times V \to \mathbb{C}$

given by

$$(heta^1\otimes heta^2)(extsf{v}_1, extsf{v}_2)=\langle heta^1, extsf{v}^1
angle\langle heta^2, extsf{v}^2
angle$$

- ▶ Observe that $\theta^1 \otimes \theta^2$ is sesquilinear because θ^1 is linear and θ^2 is conjugate linear
- The (1, 1)-tensor

$$heta^1 \otimes heta^2 + \overline{ heta}^2 \otimes \overline{ heta}^1$$

イロト イヨト イヨト イヨト 三日

7 / 45

is hermitian

Sesquilinear Forms With Respect to Basis

- Let (e₁,..., e_m) be a basis of V and (e¹,..., e^m) ⊂ V^(1,0) be the dual basis
- Let $B \in V^{(1,1)}$ and for each $1 \le i, j \le m$,

$$M_{ij} = B(e_i, e_j)$$

• For any
$$v = e_i a^i$$
 and $w = e_j b^j$,

$$B(v, w) = B(e_i a^i, e_j b^j)$$
$$= a^i \overline{b}^j B(e_i, e_j)$$
$$= a^i \overline{b}^j M_{ij}$$

- Conversely, any matrix M ∈ gl(m, C) defines a sesquilinear form using the same formula
- ▶ This defines a bijective linear map $V^{(1,1)} \rightarrow \mathsf{gl}(m,\mathbb{C})$

・ロ・・四・・ヨ・・ヨ・ ヨー

Basis of $V^{(1,1)}$

On the other hand,

$$(\epsilon^{i} \otimes \overline{\epsilon}^{j})(v, w) = (\epsilon^{i} \otimes \overline{\epsilon}^{j})(e_{k}a^{k}, e_{l}b^{l})$$
$$= a^{k}b^{l}\langle\epsilon^{i}, e_{k}\rangle\langle\epsilon^{j}, e_{l}\rangle$$
$$= a^{k}b^{l}\delta_{kl}$$
$$= a^{i}b^{j}$$

• Therefore, for any $v, w \in V$,

$$B(v,w) = M_{ij}(\epsilon^i \otimes \epsilon^j)(v,w),$$

i.e.,

$$B = M_{ij}(\epsilon^i \otimes \epsilon^j)$$

• Moreover, $B = 0 \iff \forall 1 \le i, j \le m, M_{ij} = 0$

It follows that

$$\{\epsilon^i\otimes\epsilon^j:\ 1\leq i,j\leq m\}$$

is a basis of $V^{(1,1)}$

<ロ><日><日><日><日><日><日><日><日><日><日><日><日><日</td>

Change of Basis Formula for Hermitian Form

$$N_{ij} = H(f_i, f_j)$$

= $H(e_k A_i^k, e_l A_j^l)$
= $A_i^k \bar{A}_j^l H(e_k, e_l)$
= $A_i^k M_{kl} \bar{A}_j^l$,

i.e.,

$$N = AM\bar{A}^T = AMA^*$$

Normal Form of Hermitian Form (Part 1)

- Recall that if a matrix M is hermitian, there exists a unitary matrix U such that D = U*MU is diagonal and the diagonal entries (eigenvalues of M) are real
- Let E be the diagonal matrix whose diagonal entries are

$$E_{kk} = \begin{cases} |D_{kk}|^{-1/2} & \text{if } D_{kk} \neq 0\\ 1 & \text{if } D_{kk} = 0 \end{cases}$$

• Observe that $E^*DE = EDE$ is a diagonal matrix where

$$(E^*DE)_{kk} = \begin{cases} 1 & \text{if } D_{kk} > 0 \\ -1 & \text{if } D_{kk} < 0 \\ 0 & \text{if } D_{kk} = 0 \end{cases}$$

▶ If V = UE and $N = V^*MV$, then

 $N = V^* M V = E^* U^* M U E = E^* D E$

11 / 45

Normal Form of Hermitian Form (Part 2)

• With respect to the basis (f_1, \ldots, f_m) where $f_j = e_i N_j^i$, we get

$$H(f_i, f_j) = \begin{cases} \delta_{ij} & \text{if } D_{ii} > 0\\ -\delta_{ij} & \text{if } D_{ii} < 0\\ 0 & \text{if } D_{ii} = 0 \end{cases}$$

Signature of Hermitian Form

- The signature of a diagonal matrix is (a, b, c), where a is the number of positive diagonal elements, b is the number of negative diagonal elements, and c is the number of zero diagonal elements
- The signature of a hermitian matrix is (a, b, c), where a is the number of positive eigenvalues, b is the number of negative eigenvalues, and c is the number of zero eigenvalues

Sylvester's Law of Inertia

- Let $H \in V^{(1,1)}$ be a hermitian form on a complex vector space V
- Let (e₁,..., e_n) and (f₁,..., f_n) be bases of V that both diagonalize H
- Let M be the diagonal matrix given by

$$M_{ij} = H(e_i, e_j)$$

Let N be the hermitian matrix given by

$$N_{ij} = H(f_i, f_j)$$

- Theorem. M and N have the same signature
- We can therefore define the signature of a hermitian form to be the signature of the hermitian matrix associated with a basis of V

Proof (Part 1)

- We can assume that M and N are diagonal where each diagonal element is 1, -1, or 0
- Let r be the number of positive values in $\{M_{11}, \ldots, M_{mm}\}$
- By permuting the basis vectors e_1, \ldots, e_m , we can assume that

$$M_{11} = H(e_1, e_1), \ldots, M_{rr} = H(e_r, e_r)$$

are all positive

- Let R be the subspace spanned by (e_1, \ldots, e_r)
- Let s be the number of positive values in $\{N_{11}, \ldots, N_{mm}\}$
- By permuting the basis vectors f_1, \ldots, f_m , we can assume that

$$N_{11} = H(f_1, f_1), \ldots, N_{rr} = H(f_s, f_s)$$

are all positive

► Let *S* be the subspace spanned by $\{f_1, \ldots, f_s\}$

15 / 45

Proof (Part 2)

Define the projection map

$$P: V \to R$$

$$v = e_1v^1 + \dots + e_nv^n \mapsto e_1v^1 + \dots + e_rv^r$$

$$\blacktriangleright \text{ Let } P_S: S \to R \text{ be the restriction of } P \text{ to } S$$

$$\vdash \text{ Let } Q: V \to \mathbb{R} \text{ be the quadratic form where}$$

$$Q(v) = H(v, v)$$

$$\blacktriangleright \text{ On one hand, if } v \in S, \text{ then } v = f_1b^1 + \dots + f_sb^s \text{ and}$$

$$Q(v) = Q(f_1b^1 + \dots + f_sb^2) = \beta_1(b^1)^1 + \dots + \beta_s(b^s)^2 > 0$$

• On the other hand, if $v \in \ker P_S$, then

$$v = e_{r+1}a^{r+1} + \cdots + e_na^n$$

and therefore

$$Q(v) = \alpha_{r+1}(a^{r+1})^2 + \dots + \alpha_n(a^n)^2 \leq 0$$

Proof (Part 3)

- It follows that ker(P_S) = {0} and therefore s = dim(S) ≤ r = dim(R)
- The same argument with the bases switched implies that r = dim(R) ≤ s = dim(S)
- The same argument proves that the number of negative values in {M₁₁,..., M_{mm}} is equal to the number of negative values in {N₁₁,..., N_{mm}}
- It follows that the signatures of M and N are equal

Bilinear and Sesquilinear Forms as a Linear Maps

If B is a bilinear form on a real vector space V, then it defines a linear map

$$L_B: V \to V^*,$$

where for each $v, w \in V$,

$$\langle L_B(v), w \rangle = B(v, w)$$

If B is a sesquilinear form on a complex vector space V, then it defines a linear map

$$L_B: V \to V^{(0,1)},$$

where for each $v, w \in V$,

$$\langle L_B(v), w \rangle = B(v, w)$$

and a conjugate linear map

$$R_B: V \to V^{(1,0)},$$

where for each $v, w \in V$,

$$\langle w, R_B(v) \rangle = B(w, v) \oplus (z) \oplus (z$$

Linear Map of Bilinear or Sesquilinear Form With Respect to Basis

- ▶ Let (e₁,..., e_m) be a basis of V and (e¹,..., e^m) be the dual basis
- If $M_{ij} = B(e_i, e_j)$, then

$$\langle e_j, L_B(e_i) \rangle = B(e_i, e_j) = M_{ij}$$

19 / 45

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへの

Degenerate and Nondegenerate Bilinear Forms

A bilinear or sesquilinear form B : V × V → ℝ is degenerate if there exists v ≠ 0 such that for any w ∈ V,

$$B(v,w)=0,$$

i.e.,

$$L_B(v)=0$$

A bilinear form B on a real vector space V is nondegenerate if it is not degenerate, i.e.,

$$\ker(L_B) = \{0\},\$$

or, equivalently,

$$L_B: V \to V^*$$

is an isomorphism

It follows that B is nondegenerate if and only if M is an invertible matrix

20 / 45

Signature of Nondegenerate Symmetric or Hermitian Form

Recall that if an m-by-m symmetric or hermitian matrix M has signature (p, q), then

$$\dim(\ker(M)) = m - p - q$$

- It follows that M is invertible if and only if p + q = m
- It follows that a symmetric or hermitian form H is nondegenerate if and only if the its signature (p, q) satisfies

$$p + q = m$$

イロン イロン イヨン イヨン 一日

21 / 45

Different Notation Conventions for Hermitian Form

We are using the following convention:

$$B(cv, w) = cB(v, w)$$
$$B(v, cw) = \bar{c}B(v, w)$$

Some use the following convention:

$$B(cv, w) = \bar{c}B(v, w)$$
$$B(v, cw) = cB(v, w)$$

When reading a paper or book, look carefully to see which convention is used

Cayley-Hamilton Theorem

Recall that the characteristic polynomial of a square matrix A is

$$p(x) = \det(A - xI)$$

Given any polynomial

$$p(x) = a_0 + a_1 x + \cdots + a_n x^n,$$

and square matrix M, we can define

$$p(M) = a_0 I + a_1 M + \dots + a_n M^n$$

Theorem: If p is the characteristic polynomial of a square matrix A, then

$$p(M)=0$$

4 ロ ト 4 日 ト 4 目 ト 4 目 ト 1 日 今 Q (や 23/45

Wrong Proof

Since
$$p(x) = \det(A - xI)$$
,
 $p(A) = \det(A - AI) = 0$

Characteristic Polynomial

Recall that if A is a square polynomial over C, its characteristic polynomial is

$$p_A(x) = \det(A - xI) = (\lambda_1 - x) \cdots (\lambda_n - x),$$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, counting multiplicities Therefore, for each eigenvalue λ_k ,

$$p_A(\lambda_k) = 0$$

(ロ) (部) (目) (日) (日) (の)

25 / 45

Polynomial Function of Diagonal Matrix (Part 1)

Given a polynomial

$$p(x) = a_0 + a_1 x + \cdots + a_k x^k,$$

and a diagonal matrix,

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_2 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

let

$$p(D) = a_0 I + a_1 D + \cdots + a_n D^n$$

Polynomial Function of Diagonal Matrix (Part 2)

Therefore,

p(D)				
$=a_0I+a_1\begin{bmatrix}\lambda\\0\\\vdots\\0\end{bmatrix}$	$\lambda_1 0 \cdots \\ \lambda_2 \cdots \\ \vdots \vdots \vdots \\ 0 0 \cdots $	$\begin{bmatrix} 0\\0\\\vdots\\\lambda_n \end{bmatrix} + \dots + a_n$	$\begin{bmatrix} \lambda_1^n & 0 & \cdots \\ 0 & \lambda_2^n & \cdots \\ \vdots & \vdots \\ 0 & 0 & \cdots \end{bmatrix}$	$\begin{bmatrix} 0\\0\\\vdots\\\lambda_n^2 \end{bmatrix}$
$= \begin{bmatrix} a_0 + a_1 \lambda_1 \\ \\ \end{bmatrix}$	$+\cdots+a_n\lambda_1^r$ \vdots 0	$\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$ $\frac{1}{2}$	0 $\lambda_n + \cdots + a_n \lambda_n^n$	
$=egin{bmatrix} p(\lambda_1) \ 0 & p(\ dots \ 0 \ dots \ 0 \ 0 \ 0 \ dots \ 0 \ dots \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \$	$\begin{array}{ccc} 0 & \cdots \\ (\lambda_2) & \cdots \\ \vdots & \\ 0 & \cdots & p \end{array}$	$\begin{bmatrix} 0\\0\\\vdots\\(\lambda_n) \end{bmatrix}$		
		• • • •	日本・日本・日本	₹ • ೧ ୯. ୯

27 / 45

Proof of Cayley-Hamilton For Diagonal Matrix

Therefore,

$$p_D(D) = \begin{bmatrix} p_D(\lambda_1) & 0 & \cdots & 0 \\ 0 & p_D(\lambda_2) & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & p_D(\lambda_n) \end{bmatrix}$$
$$= \begin{bmatrix} 0 & 0 & \cdots & 0 \\ 0 & 0 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & 0 \end{bmatrix}$$

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

28 / 45

Cayley-Hamilton For Diagonalizable Matrix (Part 1)

• If $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, then since

$$0 = p_A(\lambda_k) = \det(A - \lambda_k I)$$

If A is diagonalizable, then there is an invertible matrix M such that

$$A = MDM^{-1},$$

where

$$D = \begin{bmatrix} \lambda_1 & 0 & \cdots & 0 \\ 0 & \lambda_1 & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & \lambda_n \end{bmatrix},$$

Cayley-Hamilton For Diagonalizable Matrix (Part 2)

Observe that for each positive integer k,

$$(MDM^{-1})^k = (MDM^{-1})\cdots(MDM^{-1})$$

= $MD(M^{-1}M)\cdots D(M^{-1}M)DM^{-1}$
= MD^kM^{-1}

Observe that

$$p_A(x) = \det(A - xI)$$

= det(MDM⁻¹ - M(xI)M⁻¹)
= (det(M)) det(D - xI)(det(M⁻¹))
= det(D - xI) = p_D(x)

Therefore,

$$p_{A}(A) = a_{0}I + a_{1}A + \dots + a_{n}A^{n}$$

= $a_{0}MIM^{-1} + a_{1}MDM^{-1} + \dots + a_{n}(MDM^{-1})^{n}$
= $M(a_{0}I + a_{1}D + \dots + a_{n}D^{n})M^{-1}_{O}$
= $Mp_{0}(D)M^{-1}$

Proof of Cayley-Hamilton Using Analysis

For any square matrix A, there exists a sequence of diagonalizable matrices that converges to A

The map

$$\operatorname{gl}(n,\mathbb{F}) imes\operatorname{gl}(n,\mathbb{F}) o \operatorname{gl}(n,\mathbb{F})$$

 $(A,B)\mapsto
ho_A(B)$

is continuous

Therefore,

$$p_A(A) = \lim_{k \to \infty} p_{A_k}(A_k) = 0$$

Abstract Cayley-Hamilton Formula

► Recall the characteristic polynomial of a linear map A : V → V is given by

 $p_A(x) = \det(A - xI) = (-1)^n (x - \lambda_1) \cdots (x - \lambda_n) = a_0 + a_1 x + \cdots + a_n x$

where $\lambda_1, \ldots, \lambda_n$ are the eigenvalues of A, counting multiplicities Then

$$p_A(A) = (-1)^n (A - \lambda_1) \cdots (A - \lambda_n) = a_0 I + a_1 A + \cdots + a_n A^n = 0$$

Since p_A(A) is a linear map from V to V, this is equivalent to saying that for any v ∈ V,

$$p_A(A)v = 0$$

Proof Using Schur Decomposition (Part 1)

- Let A : V → V have eigenvalues λ₁,..., λ_n, counting multiplicities
- Then there exists a basis (e_1, \ldots, e_n) of V such that for each $1 \le k \le n$,

$$A(e_k) = M_k^1 e_1 + \cdots + M_k^k e_k,$$

where $M_k^k = \lambda_k$

- Let E_k be the span of $\{e_1, \ldots, e_k\}$
- Observe that $A(E_k) \subset E_k$

Since

$$(A - \lambda_k I)e_k = M_k^1 e_1 + \dots + M_k^{k-1} e_{k-1} + (M_k^k - \lambda_k)e_k$$

= $M_k^1 e_1 + \dots + M_k^{k-1} e_{k-1}$
 $\in E_{k-1},$

it follows that

$$(A - \lambda_k I)(E_k) \subset E_{k-1}$$

Proof Using Schur Decomposition (Part 2)

• Therefore, for any $v \in V = E_n$,

$$(A - \lambda_n I)v \in E_{n-1}$$

$$(A - \lambda_{n-1}I)(A - \lambda_n I)v \in E_{n-2}$$

$$\vdots \qquad \vdots$$

$$(A - \lambda_2 I) \cdots (A - \lambda_n I)v \in E_1$$

$$(A - \lambda_1 I)(A - \lambda_2 I) \cdots (A - \lambda_n I)v = 0$$

• Therefore, for any $v \in V$,

$$p_A(A)v = (A - \lambda_1 I) \cdots (A - \lambda_n I)v = 0$$

▶ It follows that $p_A(A) = 0$

<ロト < 部 ト < 言 ト < 言 ト 言 の < で 34/45

Spectral Mapping Theorem

• Given a polynomial p and a subset $S \subset \mathbb{C}$, let

$$p(S) = \{p(z) : z \in S\}$$

- Let V be a complex vector space and $L: V \rightarrow V$ be a linear map
- The spectrum of L, denoted σ(L), is the set of all eigenvalues of L, not counting multiplicity

Theorem. For each linear map $L: V \rightarrow V$ and polynomial p,

$$\sigma(p(L)) = p(\sigma(L))$$

Corollary. p(L) is invertible if and only if $0 \notin p(\sigma(L))$

 $p(\sigma(L)) \subset \sigma(p(L))$

• If $v \in V$ is an eigenvector of L with eigenvalue λ , then

$$Lv = \lambda v$$
$$L^{2}v = L(Lv) = L(\lambda v) = \lambda^{2}v$$
$$L^{k}v = \lambda^{k}v$$

• Therefore, if
$$p(x) = a_0 + a_1x + \dots + a_kx^k$$
, then

$$p(L)v = (a_0 + a_1L + \dots + a_kL^k)v$$

$$= a_0v + a_1Lv + \dots + a_kL^kv$$

$$= a_0 + a_1\lambda v + \dots + a_k\lambda^k v$$

$$= p(\lambda)v$$

• It follows that for each eigenvalue λ of L,

$$p(\lambda) \in \sigma(p(L))$$

and therefore

$$p(\sigma(L)) \subset \sigma(p(L))$$

$\sigma(p(L)) \subset p(\sigma(L))$ (Part 1)

Let μ ∈ σ(p(L)) and v be a corresponding eigenvector
 Let q(z) = p(z) − μ, which implies

 $q(L) = p(L) - \mu I$

• Then $q(L): V \to V$ is not invertible, because

$$q(L)v = p(L)v - \mu v = 0$$

By the Fundamental Theorem of Algebra, q can be factored

$$q(z) = a_k(z-z_1)\cdots(z-z_k),$$

where z_1, \ldots, z_k are the roots of q, counted with multiplicity Therefore, $q(L) = a_k(L - z_1) \cdots (L - z_k)$

 $\sigma(p(L)) \subset p(\sigma(L))$ (Part 2)

Since

$$q(L) = a_k(L - z_1 I) \cdots (L - z_k I)$$

is not invertible, at least one of the factors $L - z_j I$ is not invertible

▶ It follows that $z_j \in \sigma(L)$

Since

$$p(z_j) = q(z_j) + \mu = \mu \in \sigma(p(L)),$$

it follows that for each $\mu \in \sigma(p(L))$, there exists $\lambda \in \sigma(L)$ such that

 $p(\lambda) = \mu$

• Therefore, $\sigma(p(L)) \subset p(\sigma(L))$

Example of Nilpotent Matrix

Consider the following example:

$$M_0 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}$$

Since

$$\det(M_0 - \lambda I) = \det\left(\begin{bmatrix} -\lambda & 1 \\ 0 & -\lambda \end{bmatrix} \right) = \lambda^2,$$

the only eigenvalue of M_0 is 0

On the other hand, v is an eigenvector if and only if

$$\begin{bmatrix} 0\\0 \end{bmatrix} = M_0 v = \begin{bmatrix} 0 & 1\\0 & 0 \end{bmatrix} \begin{bmatrix} v^1\\v^2 \end{bmatrix} = \begin{bmatrix} v^2\\0 \end{bmatrix}$$

▶ Therefore, the eigenspace for λ = 1 is only 1-dimensional
 ▶ On the other hand,

$$M_0^2 = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$$

Another Nilpotent Matrix

Consider the following example:

$$M_{0} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$M_{0}^{2} = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$M_{0}^{3} = M_{0}^{2}M_{0} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Example

Consider the following example:

$$M_{\lambda} = \begin{bmatrix} \lambda & 1 & 0 \\ 0 & \lambda & 1 \\ 0 & 0 & \lambda \end{bmatrix}$$
$$M_{\lambda} - \lambda I = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$$
$$(M_{\lambda} - \lambda I)^{2} = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$
$$(M_{\lambda} - \lambda I)^{3} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

Diagonalizable Example

• On the other hand, if $\lambda_1, \lambda_2, \lambda_3$ are distinct, then

$$M = \begin{bmatrix} \lambda_1 & 1 & 0 \\ 0 & \lambda_2 & 1 \\ 0 & 0 & \lambda_3 \end{bmatrix}$$

is diagonalizable

Abstract Description of Nilpotent Matrix

• If (e_1, e_2, e_3) is the standard basis of \mathbb{R}^3 , then

$$M_0 e_1 = e_2$$
$$M_0 e_2 = e_3$$
$$M_0 e_3 = 0$$

and

$$(M_{\lambda} - \lambda I)e_1 = e_2$$

 $(M_{\lambda} - \lambda I)e_2 = e_3$
 $M_{\lambda} - \lambda I)e_3 = 0$

<ロト < 合 ト < 言 ト < 言 ト こ の Q () 43/45

Generalized Eigenspaces (Part 1)

- Consider a linear map $L: V \rightarrow V$
- v ∈ V is a generalized eigenvector of L for the eigenvalue λ if there exists k ∈ Z⁺ such that

$$(L-\lambda I)^k v = 0$$

The generalized eigenspace of λ is the set E_λ of all generalized eigenvectors along with 0,

$$E_{\lambda} = \bigcup_{k \ge 1} \ker((L - \lambda I)^k)$$

This is a nested sequence of subspaces

$$\operatorname{ker}(L - \lambda I) \subset \operatorname{ker}((L - \lambda I)^2) \subset \cdots$$

44 / 45

イロト イヨト イヨト イヨト 三日

Generalized Eigenspaces (Part 2)

The sequence cannot be infinite and therefore there exists k such that

$$\operatorname{ker}((L - \lambda I)^k) = \operatorname{ker}((L - \lambda I)^{k+1})$$

• Therefore, if $v \in \ker(L - \lambda I)^{k+l+1}$, then

$$(L - \lambda I)^{l} \mathbf{v} \in \ker(L - \lambda I)^{k+1} = \ker(L - \lambda I)^{k},$$

which implies

$$(L - \lambda I)^{k+l} v = (L - \lambda I)^k (L - \lambda I)^l v = 0$$

So

$$v \in \ker(L - \lambda I)^{k+l+1} \implies v \in \ker(L - \lambda I)^{k+l}$$

It follows that if

$$\operatorname{ker}((L - \lambda I)^{k}) = \operatorname{ker}((L - \lambda I)^{k+1}),$$

then for all $j \ge 0$

$$\operatorname{ker}((L - \lambda I)^{k}) = \operatorname{ker}((L - \lambda I)^{k+j})$$