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Abstract. The notion of a homogeneous contour integral is in-
troduced and used to construct affine integral invariants of convex
bodies. Earlier descriptions of this construction rely on a Euclidean
structure on the ambient vector space, so the behavior under lin-
ear transformations is established after the fact. The description
presented here relies only on the linear structure and a Lebesgue
measure on the ambient vector space, making its behavior under
linear transformations more transparent.

Also, recent work by Ludwig classifying different types of affine
or linearly invariant valuations on convex bodies is reviewed. The
invariants obtained using the homogeneous contour integral are ex-
actly the invariants that arise in Ludwig’s classification theorems.

1. Introduction

The subject of affine geometry can be described as the study of
affine invariant properties of subsets of n-dimensional Euclidean space
Rn. Here, affine invariant means invariant under the group of affine
transformations, which is the group generated by linear transformations
and translations.

There are two distinct approaches to this subject. One is known
as affine differential geometry. This approach is analogous to the one
taken in Euclidean or Riemannian differential geometry. One studies
affine invariant local differential invariants of the set or its boundary.
Recent accounts of affine differential geometry include [56, 88–90, 99].
This approach will not be discussed here.

Instead, we will describe here one aspect of affine integral geome-
try, where one studies affine geometric invariants of a convex body in
Rn obtained by integration or averaging. Although this is an active
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area of research, it is perhaps not familiar to most differential geome-
ters. There is no shortage of surveys and research monographs on the
subject, including books by Schneider [94], Gardner [35], and Thomp-
son [100], as well as an excellent survey article by Gardner [36].

In this short article, we will focus on recent progress [57–63, 65] to-
wards the classification of all possible affine integral invariants of a
convex body. These results will be presented from a viewpoint that
might be more comfortable and easier to digest for differential geome-
ters but that is not seen in most writings on affine integral geometry.
Ludwig [63] has written another and particularly beautiful survey tak-
ing a different approach to the same topics. Ludwig-Haberl [42] and
Haberl [40, 41] have also established classification theorems with as-
sumptions different from those considered here. Also worth noting is
McMullen’s classification of translation invariant valuations [81].

Another motivation for this article is to present a new approach,
more transparent than other commonly used ones, to constructing
affine integral invariants of a convex body. There are two previously
known approaches. One, favored by differential geometers and analysts,
is to construct appropriate measures, usually involving a generalized
notion of curvature, on the boundary of the body and integrate over
them. There are, however, significant technical difficulties in work-
ing with such measures for a general convex body. The second less
technical approach, favored by convex geometric analysts, is to con-
struct appropriate measures on the unit sphere (viewed as the space
of all possible outward unit normals to the boundary). With both ap-
proaches affine invariance is far from obvious and requires a separate
explicit proof. Also, an important and beautiful duality (see §5.6) is
obscured in both approaches. The approach taken here, using what we
call the homogeneous contour integral, is based on the latter approach
and therefore works in complete generality with minimal technical re-
quirements. With this approach, affine or at least linear invariance
is obvious at every stage, and the duality expressed by the Legendre
transform can be seen easily and clearly.

One particular aspect of affine integral geometry that has been stud-
ied very little so far but deserves further attention are the affine and
dual affine quermassintegrals, which were introduced by Lutwak [67,
68, 71] and proved to be affine invariant by Grinberg [39] (also, see
[20, 37, 47]). Although valuations play a role in their definition, they
are not valuations themselves.

This article barely scratches the surface of a deep subject of which
much is known but even more is not. It is known, for example, that the
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affine geometric invariants described here satisfy sharp affine isoperi-
metric inequalities that are stronger than the classical Euclidean geo-
metric isoperimetric inequality. These inequalities also lead to sharp
affine Sobolev inequalities that are stronger than sharp Euclidean Sobolev
inequalities. It is also either known or conjectured that these same in-
variants, when restricted to convex bodies, satisfy sharp reverse affine
isoperimetric inequalities, where the extremal bodies are simplices, in
contrast to the sharp affine isoperimetric inequalities, where the ex-
tremal bodies are ellipsoids. See, for example, [19, 21, 26–28, 38, 43, 44,
53,70,71,73–75,79,85,86,92,93].

I am very grateful to Erwin Lutwak, Gaoyong Zhang, and Monika
Ludwig not only for their invaluable help in writing this paper but
also for teaching me everything I know about affine convex geometry.
I would also like to give many thanks to Franz Schuster, Christoph
Haberl and the referee for a careful reading of the original draft of this
paper and many improvements.

2. Basic definitions and notation

We shall suppress the use of co-ordinates and therefore the space Rn.
Instead, we will always work with an n-dimensional real vector space
denoted by X.

The vector space dual to X will be denoted X∗. The natural con-
traction between a vector x ∈ X and a dual vector ξ ∈ X∗ will be
denoted by 〈ξ, x〉 = 〈x, ξ〉.

We will fix a choice of Lebesgue measure m on X and denote the
corresponding constant differential n-form dm ∈ ΛnX∗. This, in turn,
naturally induces a dual Lebesgue measure m∗ and corresponding dif-
ferential n-form dm∗ ∈ ΛnX.

Given a differentiable function f : X → R, recall that its differential
∂f : X → X∗ is defined by

〈∂f(x), v〉 =
d

dt

∣∣∣∣
t=0

f(x+ tv).

Since a vector space has a natural linear connection, we can also define,
for a twice differentiable function f , the Hessian ∂2f : X → S2X∗,
where S2X∗ denotes the symmetric tensor product of X∗, by

〈∂2f(x), v ⊗ w〉 =
d

dt

∣∣∣∣
t=0

∂f(x+ tv)w.

2.1. Linear group actions. The group of invertible linear transfor-
mations of X will be denoted by GL(X) or GL(n). If g ∈ GL(X), then
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the transpose of g will be denoted by gt : X∗ → X∗ and its inverse by
g−t.

In particular, the naturally induced action of GL(X) on X∗ is given
by ξ 7→ g−tξ for each ξ ∈ X∗ and g ∈ GL(X). If Y is a subspace of
a tensor product of one or more copies of X or X∗, then there is an
action of GL(X) on Y naturally induced by the actions on X and X∗.

The naturally induced action of GL(X) on a function f : X → Y is
f 7→ fg, where g ∈ GL(X) and fg(x) = gf(g−1x) for each x ∈ X. The
corresponding induced action of GL(X) on a function f : X∗ → Y is
f 7→ fg, where fg(ξ) = gf(gtξ) for each ξ ∈ X∗.

Each linear transformation A : X → X naturally induces a linear
transformation detA : ΛnX → ΛnX, where ΛnX is the n-exterior
power of X. Since ΛnX is 1-dimensional, detA ∈ R. Let SL(X) or
SL(n) denote the group of linear transformations with detA = 1. For
each d ∈ R, let (ΛnX)d denote the d-th power of ΛnX.

Let S2
+X denote the space of positive definite symmetric tensor prod-

uct of X and S2
+X the space of nonnegative definite tensors. Each

A ∈ S2X can be viewed as a linear transformation A : X∗ → X, and
its determinant is a linear map detA : ΛnX∗ → ΛnX and therefore
detA ∈ (ΛnX)2.

3. Objects of study

3.1. Geometric setting. Although we will be studying geometric ob-
jects in Rn, we want to suppress the appearance of co-ordinates.

Therefore, throughout this paper, we will denote byX an n-dimensional
vector space and X∗ its dual space. Note that X can be viewed as flat
affine space with a distinguished point. Also, note that there is a nat-
ural isomorphism of the tangent space TxX ' X for each x ∈ X.

3.2. Convex body. A body is a compact set K in X or X∗ that is the
closure of its interior. We denote its boundary by ∂K. A convex body
is a body that is convex.

For convenience we will assume in the rest of this paper that K ⊂ X
is a convex body that contains the origin in its interior.

3.3. The space of all convex bodies. A convex body in a vector
space X is a compact convex set with nonempty interior. The set
of all such bodies will be denoted C(X). This space is a complete
metric space with respect to Hausdorff distance. It is also an Abelian
semigroup under the operation of Minkowksi sum, which is defined by

K + L = {x+ y : x ∈ K, y ∈ L}.
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We will often restrict to convex bodies that contain the origin in
their interiors. The set of all such bodies will be denoted C0(X).

We also denote by C2
0(X) the set of convex bodies in C0(X) with

support functions that are twice continuously differentiable (see §5.1
for the definition of a support function).

The ultimate goal is to study the affine geometric properties of con-
vex bodies; this is equivalent to studying the affine geometric proper-
ties of compact convex hypersurfaces. Here, we will focus on geometric
properties that are invariant only under affine transformations that fix
a point (known as the origin). Such transformations are sometimes
called centro-affine transformations, but we prefer the more commonly
used linear transformations.

3.4. Valuations. We need an abstract framework for the study and
classification of integral invariants of convex bodies. The appropriate
setting is that of valuations, which we define here.

Given a set S ⊂ C(X), a valuation on S is a finitely additive function
Φ : S → R. In other words, if A,B,A ∩B,A ∪B ∈ S, then

(1) Φ(A) + Φ(B) = Φ(A ∪B) + Φ(A ∩B).

More generally, if Y is an additive semigroup, then a Y -valued val-
uation is a function Φ : S → Y satisfying (1).

If G is a group acting on X and S ⊂ C(X) is invariant under the
action of G, then a valuation Φ : S → R is G-invariant, if Φ(gK) =
Φ(K), for each g ∈ G and K ∈ S.

If G acts on vector spaces X and Y , then a Y -valued valuation
Φ : S → Y is G-equivariant, if Φ(gK) = gΦ(K), for each g ∈ G and
K ∈ S.

If GL(X) acts on Y , then a valuation Φ : S → Y is GL(X)-
homogeneous of degree d, if

Φ(gK) = | det g|d/n gΦ(K),

for each g ∈ GL(X) and K ∈ S.
Valuations has been and still are an active area of research. For re-

cent work that will not be discussed here, including extensions from Rn

to more general spaces such as Riemannian manifolds, see, for exam-
ple, [2–18,22–24,33,34,48–52,80–84], as well as the references in [63].

4. Overall strategy

The standard strategy for studying a geometric object is to classify
and study the properties of simpler objects that are derived from the
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original object and that behave appropriately under geometric trans-
formations.

For example, differential geometers study submanifolds in Euclidean
space usually by focusing on local differential invariants that are invari-
ant under rigid motions. Invariant theory tells us that the only such
invariants are the first and second fundamental forms and covariant
derivatives of the second fundamental form (all covariant derivatives of
the first fundamental form vanish).

We would like to follow the outline—if not the details—of such a
strategy to study the affine geometry of convex bodies. In particular,
our goal is to define and classify global affine invariant integral (instead
of local differential) invariants of convex bodies.

The appropriate abstract setting for integral invariants turns out to
be the study of continuous valuations on convex bodies that behave
well under linear transformations, as defined above. These valuations
lead naturally to affine integral invariants of a convex body. Recent
classification theorems obtained by Ludwig and Reitzner show that
all possible affine integral invariants are obtained by the constructions
presented here.

5. Fundamental constructions

5.1. The support function. The support function of a set K ⊂ X is
the function hK : X∗ → R given by

hK(ξ) = sup{〈ξ, x〉 : x ∈ K}.
Observe that hK is convex and homogeneous of degree 1 and is strictly
positive if the origin lies in the interior of the convex hull of K. Given
ξ ∈ X∗, the level sets of ξ : X → R comprise a family of parallel hy-
perplanes. The level set {x : 〈ξ, x〉 = hK(ξ)} is the “last” hyperplane
in the family that touches K.

If K ∈ C(X), then K can be recovered from the support function by

K = {x : 〈ξ, x〉 ≤ hK(ξ), ξ ∈ X∗}.
The support function behaves nicely under affine transformations. In

particular, given an affine transformation x 7→ Ax+ v for each x ∈ X,
where A : X → X is a linear transformation and v ∈ X. Then

(2) hAK+v(ξ) = hK(Atξ) + 〈ξ, v〉.
The support function is also a valuation.

Lemma 5.1. The map K 7→ hK is a GL(X)-equivariant valuation
from C(X) to the space of real-valued functions on X∗.
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Proof. If K,L,K ∪ L ∈ C0(X), then

hK∪L = max(hK , hL)

hK∩L = min(hK , hL).

Therefore,

hK∪L + hK∩L = hK + hL.

GL(X)-equivariance follows from (2). �

The same argument also implies the following for convex bodies in
C2

0(X).

Lemma 5.2. For each function Φ : [0,∞)×X × S2
+X → Y , where Y

is an additive semigroup, the map K 7→ ΦK, where ΦK : X∗ → Y is
given by

ΦK(ξ) = Φ(hK(ξ), ∂hK(ξ), ∂2hK(ξ)),

is a valuation from C2
0(X) to the space of Y -valued functions on X∗.

If GL(X) acts on Y and there exists q ∈ R such that

Φ(t, gv, (g ⊗ g)q) = (det g)q/nΦ(t, v, q),

for each g ∈ GL(X) and (t, v, q) ∈ [0,∞) × X × S2
+X, then ΦK is a

GL(X)-homogeneous valuation.

5.2. The Minkowski sum. Given sets K,L ⊂ X, we define their
Minkowski sum to be

K + L = {x+ y : x ∈ K, y ∈ L}.

If K,L ∈ C(X), then the Minkowski sum is also given by

hK+L = hK + hL.

By this and Lemma 5.1 it follows that the identity map K 7→ K is a
GL(X)-equivariant valuation with respect to the Minkowski sum.

Firey [32] extended the notion of a Minkowski sum to that of an
Lp Minkowski sum. For p ≥ 1, the Lp Minkowski sum of two convex
bodies is defined by

hpK+L = hpK + hpL.

By Lemma 5.2, the identity map K 7→ K is a GL(X)-equivariant
valuation from C0(X) to C0(X) (with respect to the Lp Minkowski sum).
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5.3. The polar body. The polar body of K is the convex body K∗ ⊂
X∗ given by

K∗ = {ξ : 〈ξ, x〉 ≤ 1 for each x ∈ K}.
Each ξ ∈ X∗ is in K∗ if and only if K is contained in the half-space
ξ ≤ 1.

If K ∈ C0(X), then the support functions hK : X → R and hK∗ :
X∗ → R uniquely determine each other via the identities

hK∗(x) = sup
ξ∈X∗\{0}

〈ξ, x〉
hK(ξ)

(3)

hK(ξ) = sup
x∈X\{0}

〈ξ, x〉
hK∗(x)

.(4)

From this it follows that
K = {x : hK∗(x) ≤ 1}
K∗ = {ξ : hK(ξ) ≤ 1}.

(5)

If K is symmetric about the origin, then hK∗ is simply the norm on
X with unit ball K and hK is the dual norm with unit ball K∗. The
support function and polar body therefore extend the concepts of a
norm and its unit ball to asymmetric convex bodies.

Observe that if K,L,K ∪ L ∈ C0(X), then,

(K ∪ L)∗ = K∗ ∩ L∗.
Therefore,

Lemma 5.3. If S∗ ⊂ C0(X∗) and Φ : S∗ → Y is a valuation, then so
is Φ∗ : S → Y , where Φ∗(K) = Φ(K∗), for each K ∈ S, and

S = {K : K∗ ∈ S∗}.
Moreover, if Φ is GL(X∗)-homogeneous, then Φ is GL(X)-homogeneous.

5.4. The inverse Gauss map. If K ∈ C0(X), then its support func-
tion h = hK is a convex function and therefore its differential is L∞

and defined almost everywhere. We observe here that, where the differ-
ential of h is defined, it defines an affine invariant notion of the inverse
Gauss map for the boundary of K.

It follows by the homogeneity of h that 〈ξ, ∂h(ξ)〉 = h(ξ) for each
ξ ∈ X∗. This implies that ∂h(ξ) ∈ ∂K for each ξ ∈ X∗\{0}. Moreover,
ξ is conormal to the boundary of K at ∂h(ξ); in other words, ξ⊥ = TxK,
where x = ∂h(ξ). For this reason we call the map ∂h : X∗\{0} → ∂K
the inverse Gauss map.

The precise relationship between ∂hK and the classical Gauss map
is given as follows.
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Proposition 5.4. If X has an inner product, so X∗ can be identified
with X, and K ∈ C0(X) has a differentiable support function hK, then
the Gauss map γK : ∂K → Sn−1 is given by

γK(∂h(ξ)) =
ξ

|ξ|
,

for each ξ ∈ X∗\{0}, where |ξ| denotes the norm induced by the inner
product.

5.5. The second fundamental form. Let K ∈ C2
0(X) and h = hK .

If ∂h is the inverse Gauss map, then ∂2h should be the inverse second
fundamental form. That is indeed the case. First, observe that if
K ∈ C2

0(X), then for each ξ ∈ X∗\{0}, TxK = ξ⊥, where x = ∂h(ξ).
Since h is a convex function, ∂2h is nonnegative definite. Moreover,

since ∂h is homogeneous of degree 0, 〈ξ, ∂2h(ξ)〉 = 0, and therefore
∂2h(ξ) ∈ S2ξ⊥. If ∂2h(ξ)|ξ⊥ is positive definite, then the second funda-

mental form of ∂K at x = ∂h(ξ) is given by

II(x) =
[
∂2h(ξ)

∣∣
ξ⊥

]−1

∈ [S2ξ⊥]∗ = S2(X/Rξ) = S2T ∗x∂K.

Observe that the definition of II is invariant under translations and
therefore is an affine invariant. Therefore, the standard second funda-
mental form of a sufficiently smooth strictly convex hypersurface ∂K
is well-defined in an affine setting, even though the first fundamental
form and Gauss map are not.

5.6. The Legendre transform. The inverse Gauss map can be made
more useful, if it is made homogeneous of degree 1. This is best done
by introducing the following variant of the support function.

Let H = 1
2
h2
K . The differential of H, ∂H : X∗ → X, is homogeneous

of degree 1. Its Hessian, ∂2H : X∗ → S2X is homogeneous of degree 0
and always nonnegative definite.

If K ∈ C2
0(X), then the map ∂H : X∗\{0} → X\{0} is a C1 dif-

feomorphism. We call this map the Legendre transform. It has the
following very nice properties.

Lemma 5.5. If K ∈ C2
0(X), K∗ ∈ C2

0(X∗), H = 1
2
h2
K, H∗ = 1

2
h2
K∗,

and

(6) x = ∂H(ξ),
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then the following hold:

hK∗(x) = hK(ξ).(7)

〈ξ, x〉 = hK(ξ)hK∗(x)(8)

ξ = ∂H∗(x)(9)

∂2H∗(x) = [∂2H(ξ)]−1(10)

In particular, ∂2H(ξ) and ∂2H∗(x) are positive definite.

Proof. Denote h = hK and h∗ = hK∗ .
We begin by showing that x ∈ X\{0} and ξ ∈ X∗\{0} satisfy (8) if

and only if

(11) x = h∗(x)∂h(ξ).

First, equation (8) implies that the maximum is achieved in the right
side of (3), and therefore ξ is a critical point of the right side of (3).
This implies (11). Conversely, if x and ξ satisfy (11), then by the
homogeneity of h,

〈ξ, x〉 = 〈ξ, h∗(x)∂h(ξ)〉
= h∗(x)〈ξ, ∂h(ξ)〉
= h∗(x)h(ξ).

Also, by (11) and the homogeneity of h∗,

h∗(x) = h∗(h∗(x)∂h(ξ)) = h∗(x)h∗(∂h(ξ)).

It follows that h∗(∂h(ξ)) = 1. If we now set x = ∂H(ξ) = h(ξ)∂h(ξ),
then

h∗(x) = h(h(ξ)∂h(ξ)) = h(ξ)h(∂h(ξ)) = h(ξ),

establishing (7).
Equation (9) follows by switching the roles of ξ and x in the proof

above.
Equation (10) and the positive definiteness of ∂2H and ∂2H∗ follow

by differentiating each side of (9) with respect to ξ. �

5.7. The curvature function. Next, we want to define an affine in-
variant curvature function, roughly equivalent to Gauss curvature. The
idea is to measure the nonlinearity of h using the determinant of the
Hessian of the support function hK . This, however, does not work,
because the Hessian is singular. This can be seen by observing that
the differential ∂hK is homogeneous of degree 0 and therefore, by the
Euler equation (14), 〈ξ, ∂2h(ξ)〉 = 0.

This awkward situation is best circumvented by using the function
H defined above. Assume K ∈ C2

0(X). Since the differential form dm



AFFINE INTEGRAL GEOMETRY FROM A DIFFERENTIABLE VIEWPOINT11

on X is homogeneous of degree n, it follows by Lemma 6.1 (stated
below) that (∂H)∗dm is an n-form homogeneous of degree n on X∗.
We can therefore write

(12) (∂H)∗dm = (det ∂2H)dm∗,

where the determinant is defined relative to the measures dm and dm∗.
Following standard practice in convex geometry, we define the curvature
function of K to be the function fK : X∗ → R homogeneous of degree
−n− 1 such that

(13) (det ∂2H) = hn+1
K fK .

Since we have already shown that ∂hK is essentially the inverse Gauss
map, it should not be a surprise that the curvature function, which is
obtained in spirit by taking the determinant of the Hessian of the sup-
port function, is essentially the Gauss curvature of ∂K. More precisely,
we have the following.

Proposition 5.6. If an inner product is put on X, giving it a Euclidean
geometric structure, then the Gauss curvature κ : ∂K → R of ∂K is
given by

κ(∂hK(ξ)) =
|ξ|−n−1

fK(ξ)

for each ξ ∈ X∗\{0}.

This proposition can be proved by choosing orthonormal coordinates
on X such that ξ is equal to the last basis vector and representing ∂K
locally as a graph over the hyperplane spanned by all but the last basis
vector.

6. The homogeneous contour integral

Our description of valuations relies on the calculus of homogeneous
functions and, in particular, a special type of integral, which we call the
homogeneous contour integral, because, as for a contour integral of a
meromorphic function over a closed curve in the complex plane (minus
the poles), the value of the integral depends only on the homology class
of the contour. The reason is also the same: the integrand is really a
closed form, so the value of the integral depends only on the cohomology
class represented by the form (we learned this interpretation of the
homogeneous contour integral from Juan Carlos Alvarez-Paiva).
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6.1. Homogeneous functions and differential forms. Given t >
0, define Dt : X → X by Dt(x) = tx. A function f : X → R is
homogeneous of degree e if

f ◦Dt = tef.

Recall that a function f is homogeneous of degree e if and only if it
satisfies the Euler equation,

(14) 〈df(x), x〉 = ef(x).

A differential form or measure µ on X is homogeneous of degree e, if

(15) D∗tµ = teµ.

We will need the following:

Lemma 6.1. Let X and Y be vector spaces, µ a differential form or
measure homogeneous of degree e on Y , and F : X → Y a differentiable
map homogeneous of degree 1. Then the differential form or measure
F ∗µ is homogeneous of degree e on X.

6.2. The homogeneous contour integral for a differential form.
By differentiating (15) with respect to t at t = 0, we see that if ω is an
n-form homogeneous of degree 0 on X, then

(16) d(xcω) = 0,

where xcω denotes the interior product of the vector field x with the
n-form ω, i.e. the (n − 1)-form such that given n − 1 vector fields
V2, . . . , Vn,

(xcω)(V2, . . . , Vn) = ω(X, V2, . . . , Vn).

If an orientation is chosen for X, then we can define the homogeneous
contour integral of ω to be

(17)

∮
X

ω =

∫
∂D

xcω,

where D is any bounded domain with the origin in its interior and
smooth boundary ∂D. By (16), this is well-defined and independent of
the domain D.

6.3. The homogeneous contour integral for a measure. A mea-
sure µ on X is homogeneous of degree e if for each t > 0, D∗tµ = teµ
or, equivalently, for each compactly supported continuous function
f : X → R, ∫

f(tx) dµ(x) = t−e
∫
f(x) dµ(x).

We describe below how to extend the definition (17) of a homogeneous
contour integral of a homogeneous differential form of degree 0 to that
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of a homogeneous contour integral of a homogeneous measure of degree
0.

We call Ω ⊂ X\{0} a star domain, if there is a positive continuous
function h : X\{0} → (0,∞) homogeneous of degree 1 such that

Ω = {x : h(x) ≤ 1}.

For each λ > 1, denote

RλΩ = λΩ\Ω = {x : 1 < h(x) ≤ λ}.

Lemma 6.2. If µ is a measure homogeneous of degree 0 on X\{0} and
λ > 1, then the quantity

(18)
µ(RλΩ)

log λ

is independent of both λ > 1 and the star domain Ω.

Proof. Fix λ > 1. Let Ω and Ω′ be star domains in X. Choose t > 0
so that λtΩ′ ⊂ Ω. Therefore,

tΩ′  λtΩ′  Ω  λΩ.

Since µ is homogeneous of degree 0,

0 = µ(λΩ\λtΩ′)− µ(Ω\tΩ′)
= µ(λΩ\Ω) + µ(Ω\λtΩ′)− µ(Ω\λtΩ′)− µ(λtΩ′\tΩ′)
= µ(RλΩ)− µ(RλtΩ

′)

= µ(RλΩ)− µ(RλΩ
′).

Therefore, the quantity (18) is independent of the star domain Ω.
The lemma now follows by observing that the function f : (0,∞)→

(0,∞) given by

f(t) = µ(RetΩ)

is a monotone function satisfying the Cauchy functional equation

f(s+ t) = f(s) + f(t).

and therefore (see, for example, [1]) f(t) = ct for each t ∈ (0,∞) and
a constant c. �

We can therefore define the homogeneous contour integral of a mea-
sure µ homogeneous of degree 0 on X to be

(19)

∮
X

µ =
µ(RλΩ)

log λ
,

where λ > 1 and Ω ⊂ X is a star domain.
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The theorem below gives yet another formula for the homogeneous
contour integral and establishes the equivalence of the different formu-
las.

Theorem 6.3. If h : X → [0,∞) is a continuous and homogeneous of
degree 1 and χ : (0,∞)→ R is a measurable function such that∫ ∞

0

χ(t)
dt

t
<∞,

then for each measure µ homogeneous of degree 0 on X,

(20)

∮
X

dµ =

(∫
X

χ(h(x))dµ(x)

)/(∫ ∞
0

χ(t)
dt

t

)
.

In particular, the value of the right side is independent of h and χ.
If the measure µ can be written as dµ = f dm, where the function

f : X\{0} → [0,∞) is continuous (and homogeneous of degree −n)
and D ⊂ X is a compact domain with smooth boundary and the origin
in its interior, then

(21)

∮
X

dµ =

∫
∂D

xcdµ.

Remark. If we fix an inner product on X and in (21) let Ω be the
Euclidean unit ball, then we obtain the formula commonly seen in
convex geometry,

(22)

∮
X

f dm =

∫
Sn−1

f(θ) dΘ,

where Sn−1 is the unit sphere.

Proof. We provide two different approaches to proving the theorem.
If the measure ω is absolutely continuous with respect to Lebesgue
measure on X\{0}, then straightforward proofs can be obtained by
fixing an inner product and corresponding Euclidean structure on X
and using polar co-ordinates. We also provide a proof that do not rely
on an inner product.

Suppose

dµ = f dm,

where f : X\{0} → R is continuous and homogeneous of degree −n.
Fix an inner product on X and define polar co-ordinates (r, θ) : X →
[0,∞) × Sn−1, where x = rθ, r = |x|, θ = x/|x|, and Sn−1 is the
standard unit sphere. Rescaling the inner product if necessary, we can
write dm = rn−1 dr dΘ, where Θ is the standard volume measure on
Sn−1.
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Then∫
X

χ(h(x))f(x) dm(x) =

∫ ∞
0

∫
Sn−1

χ(rh(θ))r−nf(θ)rn−1 dΘ dr

=

∫
Sn−1

(∫ ∞
0

χ(rh(θ))r−1 dr

)
f(θ) dΘ

=

(∫ ∞
0

χ(t)t−1 dt

)∫
Sn−1

f(θ) dΘ.

This proves that the right side of (20) does not depend on the function
χ and by (22) is equal to (21). Equation (20) itself now follows by
setting h equal to the homogeneous function of degree 1 such that
Ω = {h ≤ 1} and χ(t) equal to 1 if 1 ≤ t ≤ λ and 0 otherwise.

We can, however, prove (20) in full generality without relying on a
Euclidean structure. It suffices do this when χ is a piecewise constant
function. Assume that there exist t0 < t1 < · · · < tN < ∞ and
a1, . . . , aN > 0 such that χ(t) = ak if tk−1 ≤ t < tk for some k ≥ 1 and
0 otherwise. Then∫

χ(h(x))dµ(x) =
N∑
k=1

akµ(tk−1Rtk/tk−1
(Ω))

=

(∮
X

dµ

) N∑
k=1

ak(log tk − log tk−1)

=

(∮
X

dµ

)∫ ∞
0

χ(t)
dt

t
.

Last, we give a proof of (21) without relying on an inner product
on X. Fix λ > 1 and a continuous function h : X\{0} → (0,∞)
homogenous of degree 1. Let Ω = {h ≤ 1} be the corresponding star
domain. For each t ∈ (0, 1), we define a diffeomorphism Φt : RλΩ →
Rλ/ttΩ by

Φt(x) =

[
λ− h(x)

λ− 1
t+

h(x)− 1

λ− 1

]
x.

By equation (19),

µ(Rλ/ttΩ) = (log λ− log t)

∮
X

dµ.

Differentiating both sides with respect to t at t = 1, it follows that

(23)
d

dt

∣∣∣∣
t=1

µ(Rλ/ttΩ) = −
∮
X

dµ.
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On the other hand, if v : X → X is given by

v(x) =
d

dt

∣∣∣∣
t=1

Φt(x)

=
λ− h(x)

λ− 1
x

(24)

and Lv denotes the Lie derivative with respect to the vector field v,
then by (24),

d

dt

∣∣∣∣
t=1

µ(Rλ/ttΩ) =
d

dt

∣∣∣∣
t=1

∫
RλΩ

Φ∗tdµ

=

∫
RλΩ

Lvdµ

=

∫
RλΩ

d(vcdµ)

=

∫
λ∂Ω

vcdµ−
∫
∂Ω

vcdµ

= −
∫
∂Ω

xcdµ.(25)

By (23) and (25), the homogeneous contour integral defined by (19) is
equal to (21) with D equal to any star domain Ω. Since d(xcdµ) = 0,
it follows that equality also holds for any domain D that contains the
origin in its interior. �

Finally, the following shows that any standard integral of a homoge-
neous measure over a star domain can be written as an homogeneous
contour integral.

Lemma 6.4. If h : X → (0,∞) is continuous and homogeneous of
degree 1 and µ is a measure on X\{0} homogeneous of degree e ∈
(0,∞), then

µ(Ω) =
1

e

∮
X

h−edµ,

where Ω = {x : h(x) ≤ 1}.

Proof. Let χ : [0,∞)→ [0,∞) be given by

χ(t) =

{
te if 0 ≤ t ≤ 1

0 otherwise,
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for each t ∈ [0,∞). By (20),

µ(Ω) =

∫
Ω

dµ

=
1

e

(∫
X

χ(h(x))h−e(x) dµ(x)

)/(∫ ∞
0

χ(t)t−1 dt

)
=

1

e

∮
h−edµ.

�

6.4. Homogeneous integral calculus. A remarkable fact is that all
of the standard formulas of integral calculus also hold for the homoge-
neous contour integral. The following results can be established using
their standard counterparts and (20).

The following is a homogeneous version of Stoke’s theorem.

Proposition 6.5. If η is an (n − 1)-form homogeneous of degree 0,
then dη is an n-form homogeneous of degree 0 and∮

dη = 0.

We can therefore integrate by parts.

Corollary 6.6. If f and g are functions on X homogeneous of degree
d and −n− d+ 1 respectively, then∮

X

f(x)∂g(x) dm(x) = −
∮
X

g(x)∂f(x) dm(x).

The following homogeneous version of the change of variables theo-
rem also follows directly from the definition of an homogeneous contour
integral and the standard change of variables formula.

Proposition 6.7. If X and Y are oriented n-dimensional vector spaces,
F : X\{0} → Y \{0} is an orientation-preserving diffeomorphism ho-
mogeneous of degree 1, and ω is an n-form homogeneous of degree 0 on
Y , then F ∗ω is an n-form homogeneous of degree 0 on X and∮

X

F ∗ω =

∮
Y

ω.

Corollary 6.8. If X, Y , and F are as defined in Proposition 6.7, mX

and mY are Lebesgue measures on X and Y respectively, and g : Y →
R is a measurable function homogeneous of degree −n, then∮

Y

g(y) dmY (y) =

∮
X

g(F (x)) det ∂F (x) dmX(x).
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The following is a homogeneous version of the Riesz representation
theorem.

Proposition 6.9. Given a bounded linear functional ` on the space
of continuous functions homogeneous of degree d on X, there exists a
unique measure µ homogeneous of degree −d on X such that

`(f) =

∮
f(x) dµ(x).

7. An explicit construction of valuations

In this section we describe how to construct integral invariants of a
convex body K ⊂ X that behave well under GL(X) and show that
these invariants are valuations.

We begin with the obvious.

Lemma 7.1. If K 7→ µK is a valuation from C(X) to Y -valued mea-
sures homogeneous of degree 0 on a vector space V , where Y is an
additive semigroup, then so is

K 7→
∮
V

µK .

The same is true, of course, for standard integrals, but we need only
the homogeneous contour integral here.

By Lemma 7.1, Lemma 5.2, and Proposition 6.7,

Proposition 7.2. Given a vector space Y and a measurable function

φ : X∗ × (0,∞) × X × S2
+X → Y that is homogeneous of degree −n,

the map Φ : C2
0(X)→ Y given by

(26) Φ(K) =

∮
X∗
φ(ξ, hK(ξ), ∂hK(ξ), ∂2hK(ξ)) dm∗(ξ),

for each K ∈ C2
0(X), is a valuation.

If φ(gtξ, t, gv, gw) = φ(ξ, t, v, w) for each g ∈ SL(X), then Φ is an
SL(X)-invariant valuation.

If there exists d ∈ R such that φ(gtξ, t, gv, gw) = (det g)d gφ(ξ, t, v, w)

for each g ∈ GL(X), ξ ∈ X∗, v ∈ X, and w ∈ S2
+X, then Φ is a

GL(X)-homogeneous valuation.

7.1. Duality.

Proposition 7.3. Given a function φ and valuation Φ as in Proposi-
tion 7.2, there is a dual function φ∗ : X × (0,∞) ×X∗ × S2

+X
∗ → Y

homogeneous of degree −n and corresponding valuation

Φ∗(K∗) =

∮
X

φ∗(x, hK∗(x), ∂hK∗(x), ∂2hK∗(x)) dm(x).
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such that Φ(K) = Φ∗(K∗), for each K ∈ C2
0(X) ∩ [C2

0(X∗)]∗.

Proof. Assume that K ∈ C2
0(X) and K∗ ∈ C2

0(X∗). The trick here is to
write everything in terms of H = 1

2
h2
K .

Given a function φ as defined in Proposition 7.2, define ψ : X∗ ×
(0,∞)×X × S2

+X → Y by

φ(ξ, t, x, q) = ψ

(
ξ,

1

2
t2, tx, tq + x⊗ x

)
.

It follows by Lemma 5.5 that for each for each convex body K ∈ C2
0(X)

and ξ ∈ X∗,
ψ(ξ,HK(ξ), ∂HK(ξ), ∂2HK(ξ)) = φ(ξ, hK(ξ), ∂hK(ξ), ∂2hK(ξ)).

Define ψ∗ : X ×R×X∗ × S2
+X

∗ → Y by

ψ∗(x, t, ξ, q) = ψ(ξ, t, x, q−1),

φ∗ : X ×R×X∗ × S2
+X

∗ → Y by

φ∗(x, t, ξ, q) = ψ∗
(
x,

1

2
t2, tξ, tq + ξ ⊗ ξ

)
,

and

Φ∗(K∗) =

∮
X

φ∗(x, hK∗(x), ∂hK∗(x), ∂2hK∗(x)) dm(x).

Then by Lemma 5.5 and Corollary 6.8, Φ(K) = Φ∗(K∗) for each K ∈
C2

0(X), establishing the proposition. �

7.2. Volume. The volume of a convex body and its polar are two
examples of valuations of the type constructed above. Demonstrating
this is perhaps most easily done using polar coordinates, but we insist
on providing a proof that does not rely on an inner product.

Let V (Ω) denote the volume of a set Ω ⊂ X with respect to the
Lebesgue measure m. If Ω ⊂ X∗, then V (Ω) denotes the volume with
respect to the dual measure m∗.

Lemma 7.4. If K ∈ C2
0(X), then

V (K) =
1

n

∮
X

h−nK∗ dm

=
1

n

∮
X∗
hKfK dm

∗.

Proof. The first equality follows from Lemma 6.4 with µ = m and
e = n, and the second equality follows from the first by Corollary 6.8,
(12), and (13). �
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8. Classification of valuations

We can now use Proposition 7.2 with canonical operations on the
vector space X, its dual X∗, and symmetric tensors S2X to construct
valuations that behave nicely under the action of GL(X) and SL(X).
On the other hand, recent classification theorems by M. Ludwig and
M. Reitzner show that this produces all possible such valuations.

9. Scalar valuations

9.1. SL(n)-invariant valuations. By Proposition 7.2 we can con-
struct SL(n)-invariant valuations on C2

0(X) as follows.

Corollary 9.1. If φ : [0,∞)→ [0,∞) is continuous, then

Ωφ(K) =

∮
X∗
φ(hn+1

K fK)h−nK dm∗

defines an SL(n)-invariant valuation on C2
0(X).

The valuation Ωφ is a generalization of affine surface area and Lp
affine surface area (see Section 9.1.1).

Using the Legendre transform, we get the following dual formula for
the valuation Ωφ established by Ludwig [64], generalizing the theorem
of Hug (see Section 9.2).

Proposition 9.2. If φ : [0,∞) → [0,∞) is continuous, φ∗ : [0,∞) →
[0,∞) is given by

φ∗(t) = tφ(1/t),

for each t ∈ (0,∞) and

φ∗(0) = lim
t→0

tφ(1/t),

then Ωφ(K) = Ωφ∗(K
∗) for each K ∈ C2

0(X).

Proof. By Proposition 7.3,

Ωφ(K) =

∮
X∗
φ(hn+1

K fK)h−nK dm∗

=

∮
X

φ(1/(hn+1
K∗ fK∗))h

n+1
K∗ fK∗h

−n
K∗ dm

= Ωφ∗(K
∗),

�

To extend the valuation Ωφ to C0(X), the function φ must behave
reasonably at 0 and ∞. M. Ludwig and M. Reitzner [66] have estab-
lished the following converse.
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Theorem 9.3. Any SL(X)-invariant upper semicontinuous real-valued
valuation on C0(X) that vanishes for polytopes must be equal to Ωφ for
a concave function φ satisfying limt→0 φ(t) = limt→∞ φ(t)/t = 0.

9.1.1. GL(X)-homogeneous valuations. An obvious way to construct
scalar GL(X)-homogeneous valuations on smooth convex bodies is as
follows.

Corollary 9.4. For each p ∈ (−∞,−n) ∪ (−n,∞],

(27) Ωp(K) =

∮
X∗

(hn+1
K fK)

n
n+ph−nK dm∗

defines a GL(X)-homogeneous valuation on C2
0(X).

Note that Ω0(K) = nV (K) and Ω∞(K) = nV (K∗).
The valuation Ω1 is known as affine surface area and was originally

defined only for smooth convex bodies (see, for example, the mono-
graph of Blaschke [25]). Different generalizations of affine surface area
to arbitrary convex bodies were introduced by Leichtweiss [54], Schütt
and Werner [96], and Lutwak [69]. The equivalence of these definitions
was established by Schütt [95], Leichtweiss [55] (also, see Hug [45]),
and Dolzmann-Hug [31].

Lutwak [72] introduced the more general invariant Ωp as defined
by (27), called it the Lp affine surface area, and showed that it is
invariant under SL(n) transformations of the convex body. Lutwak
also found a characterization of Ωp that extends it to arbitrary and not
just sufficiently smooth convex bodies. Hug [45] extended these results
to p > 0, and Meyer and Werner [87] to p > −n.

Geometric interpretations of the Lp affine surface area of a sufficiently
smooth convex body that are valid for all p 6= −n have been established
by Schütt and Werner [97,98] and Werner and Ye [101].

M. Ludwig and M. Reitzner [66] have established the following con-
verse to Corollary 9.4.

Theorem 9.5. Any upper semicontinuous real-valued valuation Φ on
C0(X) that is GL(X)-homogeneous of degree q ∈ R must be

Φ =


b0Ωp if q ∈ [−n, 0) ∪ (0, n]

a0 + b0Ωp if q = 0

0 otherwise,

where a0 ∈ R and b0 ∈ [0,∞) and

q

n
=
n− p
n+ p

.
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9.2. Hug’s theorem. Hug [46] established a duality formula for the Lp
affine surface area of arbitrary convex bodies. For sufficiently smooth
convex bodies, Hug’s theorem is easily proved using the Legendre trans-
form.

Proposition 9.6. If K ∈ C2
0(X) and K∗ ∈ C2

0(X∗), then

Ωp(K
∗) = Ωn2/p(K).

Proof. Set

φ(t) = tp/(n+p)

φ∗(t) = tn/(n+p).

in Proposition 9.2. �

10. Continuous GL(n)-homogeneous valuations

In what follows, we will restrict our attention to valuations defined
with the homogeneous contour integral, where the integrand is a func-
tion of a convex body’s support function and its derivative or those
of the polar but without using second or higher derivatives. By theo-
rems of M. Ludwig, it turns out that this is all that is needed in order
to construct all possible continuous GL(n)-homogeneous valuations of
convex bodies.

10.1. Scalar valuations. Of the scalar valuations defined in §9, the
only ones that meet the restrictions above are the volume of the convex
body and the volume of its polar. There is in fact another continuous
scalar valuation, namely the constant valuation (e(K) = 1 for each
nonempty convex body K), which cannot be written as an homoge-
neous contour integral.

Ludwig [59] established the following:

Theorem 10.1. A real-valued GL(n)-homogeneous continuous valua-
tion on C0(X) must be a constant times one of the following for each
K ∈ C0(X):

K 7→


1

V (K)

V (K∗)

10.2. Vector-valued valuations. Two obvious vector-valued linear
invariants of a convex body are its center of mass and the center of
mass of its polar. The center of mass of K ∈ C(X) is defined to be

c(K) =
1

V (K)

∫
K

x dm(x).
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The “denormalized” center of mass V (K)c(K) is a valuation that has
the following formulas.

Proposition 10.2. If K ∈ C2
0(X), then

V (K)c(K) =

∫
K

x dm(x)(28)

=
1

n+ 1

∮
X

xh−n−1
K∗ (x) dm(x)(29)

=
1

n+ 1

∮
X∗
∂hK(ξ)hK(ξ)fK(ξ) dm∗(ξ)

=
n

n+ 1

∫
K∗
∂h(ξ)hK(ξ)n+1fK(ξ) dm∗(ξ)

Observe that (28) extends the definition of c(K) to each K ∈ C(X),
and (29) is valid for each K ∈ C0(X).

In dimension 2 there is an additional twist. Observe that A ∈ Λ2X∗

defines a linear map A : X → X∗. Moreover, gtAg ∈ Λ2X∗ for each
g ∈ GL(X). If dimX = 2, then Λ2X∗ is 1-dimensional and therefore
if A is nonzero, then gtAg must be a scalar multiple of A. It is easily
verified that if dimX = 2, then

(30) gtAg = (det g)A,

for each A ∈ Λ2X∗ and g ∈ GL(X). This observation leads to the
following:

Lemma 10.3. Assume dimX = 2 and S ⊂ C(X) is invariant under
GL(X).

If Φ : S → X is a GL(2)-homogeneous valuation, and A ∈ Λ2X∗,
then AΦ : S → X∗ is a GL(2)-homogeneous valuation.

If Φ : S → X∗ is a GL(2)-homogeneous valuation, and A ∈ Λ2X,
then AΦ : S → X is a GL(2)-homogeneous valuation.

Proof. We prove only the first statement. Assume Φ is GL(2)-homogeneous
of degree q ∈ R. If g ∈ GL(X), then by the definition of GL(n)-
homogeneity and (30),

AΦ(gK) = (det g)q/2AgΦ(K)

= (det g)q/2(det g)g−tAΦ(K)

= (det g)1+q/2g−tAΦ(K).

�

Ludwig [57] proved the following:
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Theorem 10.4. If Φ : C0(X)→ X is a nonvanishing GL(n)-homogeneous
continuous valuation, then either there exists a ∈ R such that Φ(K) =
aV (K)c(K) or dimX = 2 and there exists A ∈ Λ2X such that Φ(K) =
V (K)Ac(K∗), for each K ∈ C0(X).

If Φ : C0(X) → X∗ is a nonvanishing GL(n)-homogeneous con-
tinuous valuation, then either there exists a ∈ R such that Φ(K) =
aV (K∗)c(K∗) or dimX = 2 and there exists A ∈ Λ2X∗ such that
Φ(K) = V (K)Ac(K), for each K ∈ C0(X).

There are obvious formulas for two other GL(n)-homogeneous vector-
valued valuations, but by Corollary 6.8, they are identically zero in
dimensions 2 and higher. One is∫

K∗
∂hK(ξ) dm∗(ξ) =

1

n

∮
h−nK ∂hK dm

∗(ξ)

= − 1

n(n− 1)

∮
∂(h−n+1

K )

= 0.

The other is just the same formula applied to K∗.

11. Matrix-valued valuations

A natural symmetric matrix-valued linear invariant of K ∈ C0(X) is
its second moment

M2(K) =
n+ 2

V (K)

∫
K

x⊗ x dm(x) ∈ S2X.

The normalization constant n+ 2 is chosen so that if K is the unit ball
of the inner product g ∈ S2X∗, then M2(K) = g−1 ∈ S2.

A new symmetric matrix-valued linear invariant of K ∈ C0(X) was
introduced in [74] (and later identified as being analogous to the Fisher
information of a probability density). This is defined to be

M−2(K) =
n

V (K)

∫
K

∂hK∗(x)⊗ ∂hK∗(x) dm(x) ∈ S2X∗.

Note that M−2(K) is not necessarily equal to M2(K∗). Again, the
normalization constant n is chosen so that if K is the unit ball of the
inner product g ∈ S2X∗, then M−2(K) = g.

The denormalized invariants are valuations given by the following
formulas.
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Proposition 11.1. If K ∈ C2
0(X), then

V (K)M2(K) = (n+ 2)

∫
K

x⊗ x dm(x)(31)

=

∮
X

(x⊗ x)h−n−2
K∗ (x) dm(x)(32)

=

∮
X∗

[∂hK∗(ξ)⊗ ∂hK∗(ξ)]hK(ξ)fK(ξ) dm∗(ξ)

= n

∫
K∗

[∂hK∗(ξ)⊗ ∂hK∗(ξ)]hn+1
K (ξ)fK(ξ) dm∗(ξ).

and

V (K)M−2(K) = n

∫
K

∂hK∗(x)⊗ ∂hK∗(x) dm(x)(33)

=

∮
X

[∂hK∗(x)⊗ ∂hK∗(x)]h−nK∗(x) dm(x)(34)

=

∮
X∗

(ξ ⊗ ξ)h−1
K (ξ)fK(ξ) dm(x)

= (n+ 2)

∫
K∗

(ξ ⊗ ξ)hn+1
K (ξ)fK(ξ) dm∗(ξ).

Equations (31) and (33) extend the definition of M2(K) and M−2(K)
to each K ∈ C(X), while (32) and (34) are valid for each K ∈ C0(X).

In [60] Ludwig classifies symmetric matrix-valued valuations. Lud-
wig [60] established the following:

Theorem 11.2. If Φ : C0(X) → S2X is a nonvanishing GL(n)-
homogeneous continuous valuation, then there exists a ∈ R such that
either Φ(K) = aV (K)M2(K) or Φ(K) = aV (K∗)M−2(K∗).

If Φ : C0(X) → S2X∗ is a nonvanishing GL(n)-homogeneous con-
tinuous valuation, then there exists a ∈ R such that either Φ(K) =
aV (K)M−2(K) or Φ(K) = aV (K∗)M2(K∗).

11.1. The Cramer-Rao inequality. The Cramer-Rao inequality [30,
91] states that the second moment matrix of a random vector dominates
the inverse of the Fisher information matrix, and equality holds if and
only if the random vector is Gaussian. The proof (see, for example,
[29]) is elementary, requiring only the Cauchy-Schwarz inequality and
integration by parts.

In [75] a Cramer-Rao inequality is proved for convex bodies. The
proof given in [75] appears to be much more involved than the one for
random vectors. We show here that it suffices to give essentially the
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same proof as for random vectors but with all integrals replaced by
homogeneous contour integrals.

First, we recall the original Cramer-Rao inequality and its proof.

Theorem 11.3. [30, 91] If R is a random vector in X with probabil-
ity measure f dm, where f : X → [0,∞) is differentiable and decays
sufficiently rapidly at infinity, then

(35) E[R⊗R] ≥ E[∂ log f(R)⊗ ∂ log f(R)]−1,

with equality holding if and only if R is Gaussian.

Proof. If v ∈ X and ξ ∈ X∗, then by integration by parts and the
Cauchy-Schwarz inequality,

〈ξ, v〉 =

∫
X

[〈v, ∂〉, 〈ξ, x〉]f(x) dm(x)

= −
∫
X

〈ξ, x〉〈v, ∂f(x)〉 dm(x)

= −
∫
X

〈ξ, x〉〈v, ∂ log f(x)〉f(x) dm(x)

≤
(∫

X

〈ξ, x〉2f(x) dm(x)

)1/2(∫
X

〈v, ∂ log f(x)〉2f(x) dm(x)

)1/2

= (〈ξ ⊗ ξ, E[R⊗R]〉〈v ⊗ v, E[∂ log f(R)⊗ ∂ log f(R)]〉)1/2.

Since this holds for all v ∈ X and ξ ∈ X∗, inequality (35) follows. �

Next, we adapt the proof above to convex bodies.

Theorem 11.4. [75] If K ∈ C0(X), then

(36) M2(K) ≥M−2(K)−1,

with equality holding if and only if K is an ellipsoid centered at the
origin.

Proof. If K ∈ C0(X), v ∈ X and ξ ∈ X∗, then by Corollary 6.6 and
the Cauchy-Schwarz inequality,

〈ξ, v〉 =
1

nV (K)

∮
X

[〈v, ∂〉, 〈ξ, x〉]h−nK∗(x) dm(x)

= − 1

V (K)

∮
X

〈ξ, x〉〈v, ∂hK∗(x)〉h−n−1
K∗ (x) dm(x)

≤
(

1

V (K)

∮
X

〈ξ, x〉2h−n−2
K∗ (x) dm(x)

)1/2(
1

V (K)

∮
X

〈v, ∂hK∗(x)〉2h−nK∗(x) dm(x)

)1/2

= 〈ξ ⊗ ξ,M2(K)〉1/2〈v ⊗ v,M−2(K)〉1/2.
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Since this holds for each v ∈ X and ξ ∈ X∗, inequality (36) follows. �

12. Homogeneous function- and convex body-valued
valuations

Observe that associated with M2(K) and M−2(K) are homogeneous
functions hΓ2K : X∗ → [0,∞) given by

h2
Γ2K

(ξ) = 〈ξ ⊗ ξ,M2(K)〉

and hΓ∗−2K
: X → [0,∞) given by

h2
Γ∗−2K

(v) = 〈v ⊗ v,M−2(K)〉.

The functions hΓ2K and hΓ∗−2K
are in turn the support functions of

ellipsoids, which we denote by Γ2K ⊂ X and Γ∗−2K ⊂ X∗. These
functions and bodies have the following natural generalizations.

If p ∈ [1,∞), let Hp
c(X) denote the space of convex real-valued

functions on X homogeneous of degree p. Note that a function h :
X∗ → R is the support function of a convex body that contains the
origin in its interior if and only if hp ∈ Hp

c(X
∗) and is positive outside

the origin.
If K ∈ C0(X), then a natural way to define convex homogeneous

functions hpΓpK ∈ H
p
c (X∗) and hpΓ∗−pK ∈ H

p
c (X∗) is by

hpΓpK(ξ) =
cn,p
V (K)

∫
K

|〈ξ, x〉|p dm(x)

hpΓ∗−pK(v) =
cn,p
V (K)

∫
K

|〈v, ∂HK∗(x)〉|p dm(x),

where

cn,p =
ω2ωnωp−1

ωn+p

,

and

ωk =
πk/2

Γ(1 + k
2
)

is the volume of the standard unit ball in k-dimensional Euclidean
space. The normalization is again chosen so that if K is the unit ball
of an inner product, then ΓpK = Γ−pK = K.

Such functions are always even and can be generalized as follows.
Given p ∈ [1,∞), t ∈ [−1, 1], and K ∈ C2

0(X), define convex bodies
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ΓtpK,Γ
t
−pK ⊂ X such that

hpΓtpK(ξ) =
cn,p
V (K)

∫
K

[(1 + t)〈ξ, x〉p+ + (1− t)〈ξ, x〉p−] dm(x)

=
cn,p

(n+ p)V (K)

∮
X

[(1 + t)〈ξ, x〉p+ + (1− t)〈ξ, x〉p−]h−n−pK∗ (x) dm(x)

=
cn,p

(n+ p)V (K)

∮
X∗

[(1 + t)〈ξ, ∂HK(η)〉p+ + (1− t)〈ξ, ∂HK(η)〉p−]hK(η)fK(η) dm∗(η)

=
cn,p
V (K)

∮
K∗

[(1 + t)〈ξ, ∂HK(η)〉p+ + (1− t)〈ξ, ∂HK(η)〉p−]dm∗(η)

hp
Γt∗−pK

(v) =
cn,p
V (K)

∫
K

[(1 + t)〈v, ∂HK∗(x)〉p+ + (1− t)〈v, ∂HK∗(x)〉p−] dm(x)

=
cn,p

(n+ p)V (K)

∮
X

[(1 + t)〈v, ∂HK∗(x)〉p+ + (1− t)〈v, ∂HK∗(x)〉p−]h−n−pK∗ (x) dm(x)

=
cn,p

(n+ p)V (K)

∮
X∗

[(1 + t)〈v, ξ〉p+ + (1− t)〈v, ξ〉p−]h1−p
K (ξ)fK(ξ) dm∗(ξ)

=
cn,p
V (K)

∮
K∗

[(1 + t)〈v, ξ〉p+ + (1− t)〈v, ξ〉p−]hn+1
K (ξ)fK(ξ) dm∗(ξ)

where for each s ∈ R, s+ = s and s− = 0 if s ≥ 0 and s+ = 0 and
s− = −s if s ≤ 0.

Recent classification theorems of Ludwig [61], similar to the other
theorems cited in this paper, suggest strongly the following conjecture
of Ludwig: If n ≥ 3, then any continuous GL(n)-homogeneousHp

c(X
∗)-

valued valuation on C0(X) is of the form

aV (K)hpΓtpK or aV (K∗)hp
Γt−pK

∗

for some t ∈ [−1, 1] and a ∈ [0,∞) and that any continuous GL(n)-
homogeneous Hp

c(X)-valued valuation on C0(X) is of the form

aV (K)hp
Γt−pK

or aV (K∗)hpΓtpK∗

for some t ∈ [−1, 1] and a ∈ [0,∞).

13. Questions

We end with a few rather open-ended questions.

• The discussion here exploits Proposition 6.7 and Corollary 6.8,
where the change of variables is always either a linear trans-
formation of X or the Legendre transform associated with a
convex body. Are there further applications of these results,
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where more general diffeomorphisms homogeneous of degree 1
are used?
• Symmetric 2-tensor-valued valuations have been studied exten-

sively. Do continuous GL(n)-homogeneous anti-symmetric 2-
tensor-valued valuations exist? (Probably not)
• Another obvious way to define a continuous GL(n)-homogeneous

matrix-valued valuation Φ : C2
0(X)→ X ⊗X∗ is

Φ(K) =
1

n

∮
X

x⊗ ∂hK∗(x)h−n−1
K∗ (x) dm(x),

for each convex body K. The trace of this valuation is the
volume of K. What if anything can be said about this valua-
tion? Is there a classification of continuous GL(n)-homogeneous
X ⊗ X∗-valued valuations? The conjecture would be that the
only possibilities are K 7→ Φ(K) or Φ(K∗).
• The theorems of Ludwig on the classification of continuous

GL(n)-homogeneous valuations are proved by analyzing the val-
uations when restricted to polytopes. Is there a different proof
using the properties of the homogeneous contour integral?
• The approach taken here leads naturally to the definition of lo-

cal geometric invariants of a Finsler manifold, by using the ho-
mogeneous contour integral on each tangent or cotangent space.
For example, if Kx ⊂ TxM is the unit ball of a Finsler metric
at a point x in the manifold M , then Γ2Kx, Γ−2Kx, Γ2K

∗
x, and

Γ−2K
∗
x define different Riemannian metrics naturally associated

with the Finsler metric. Are such invariants useful in Finsler
geometry?
• It has been shown [76–78] that affine valuations of convex bodies

are naturally associated with moments and generalized Fisher
information (also known as Sobolev norms) of probability den-
sity functions. Can the concept of valuations be extended to
probability densities or measures and classified in that context?
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Lutwak, Manuscripta Math. 65 (1989), 181–197. MR 1011431 (90j:52004)

56. A. M. Li, U. Simon, and G. S. Zhao, Global affine differential geometry of
hypersurfaces, de Gruyter Expositions in Mathematics, vol. 11, Walter de
Gruyter & Co., Berlin, 1993.

57. M. Ludwig, Moment vectors of polytopes, Rend. Circ. Mat. Palermo (2) Suppl.
(2002), no. 70, part II, 123–138, IV International Conference in “Stochastic
Geometry, Convex Bodies, Empirical Measures & Applications to Engineering
Science”, Vol. II (Tropea, 2001).

58. , Projection bodies and valuations, Adv. Math. 172 (2002), 158–168.
59. , Valuations of polytopes containing the origin in their interiors, Adv.

Math. 170 (2002), 239–256.
60. , Ellipsoids and matrix-valued valuations, Duke Math. J. 119 (2003),

159–188.
61. , Minkowski valuations, Trans. Amer. Math. Soc. 357 (2005), 4191–

4213.
62. , Intersection bodies and valuations, Amer. J. Math. 128 (2006), no. 6,

1409–1428.
63. , Valuations in the affine geometry of convex bodies, Integral geom-

etry and convexity, World Sci. Publ., Hackensack, NJ, 2006, pp. 49–65.
MR 2240973 (2007f:52033)

64. , General affine surface areas, preprint, 2008.



AFFINE INTEGRAL GEOMETRY FROM A DIFFERENTIABLE VIEWPOINT33

65. M. Ludwig and M. Reitzner, A characterization of affine surface area, Adv.
Math. 147 (1999), no. 1, 138–172.

66. , A classification of SL(n) invariant valuations, Annals Math. (2009),
to appear.

67. E. Lutwak, A general isepiphanic inequality, Proc. Amer. Math. Soc. 90
(1984), no. 3, 415–421. MR 728360 (85i:52005)

68. , Inequalities for Hadwiger’s harmonic Quermassintegrals, Math. Ann.
280 (1988), no. 1, 165–175. MR 928304 (89h:52005)

69. , Extended affine surface area, Adv. Math. 85 (1991), 39–68.
MR 1087796 (92d:52012)

70. , Inequalities for mixed projection bodies, Trans. Amer. Math. Soc. 339
(1993), 901–916. MR MR1124171 (93m:52011)

71. , Selected affine isoperimetric inequalities, Handbook of convex geom-
etry, Vol. A, B, North-Holland, Amsterdam, 1993, pp. 151–176. MR 1242979
(94h:52014)

72. , The Brunn-Minkowski-Firey theory. II. Affine and geominimal sur-
face areas, Adv. Math. 118 (1996), 244–294. MR MR1378681 (97f:52014)

73. E. Lutwak, D. Yang, and G. Zhang, Lp affine isoperimetric inequalities, J.
Differential Geom. 56 (2000), 111–132.

74. , A new ellipsoid associated with convex bodies, Duke Math. J. 104
(2000), 375–390.

75. , The Cramer-Rao inequality for star bodies, Duke Math. J. 112 (2002),
59–81.

76. , Cramer-Rao and moment-entropy inequalities for Renyi entropy and
generalized Fisher information, IEEE Trans. Inform. Theory 51 (2005), 473–
478.

77. , Optimal Sobolev norms and the Lp Minkowski problem, Int. Math.
Res. Not. (2006), 62987, 1–21.

78. , Moment-entropy inequalities for a random vector, IEEE Trans. In-
form. Theory 53 (2007), 1603–1607. MR MR2303029 (2007m:94071)

79. E. Lutwak and G. Zhang, Blaschke-Santalo inequalities, J. Differential Geom.
47 (1997), 1–16.

80. P. McMullen, Continuous translation-invariant valuations on the space of com-
pact convex sets, Arch. Math. (Basel) 34 (1980), 377–384. MR MR593954
(81m:52013)

81. , Valuations and dissections, Handbook of convex geometry, Vol. A, B,
North-Holland, Amsterdam, 1993, pp. 933–988. MR MR1243000 (95f:52018)

82. , Isometry covariant valuations on convex bodies, Rend. Circ. Mat.
Palermo (2) Suppl. (1997), 259–271, II International Conference in “Stochas-
tic Geometry, Convex Bodies and Empirical Measures” (Agrigento, 1996).
MR MR1602986 (99a:52016)

83. , Valuations and tensor weights on polytopes, Mathematika 53 (2006),
1–47 (2007). MR MR2304051 (2008d:52018)

84. , Valuations on lattice polytopes, Adv. Math. 220 (2009), 303–323.
MR MR2462842

85. M. Meyer, Convex bodies with minimal volume product in R2, Monatsh. Math.
112 (1991), no. 4, 297–301.



34 DEANE YANG

86. M. Meyer and S. Reisner, Shadow systems and volumes of polar convex bodies,
Mathematika 53 (2006), no. 1, 129–148 (2007).

87. M. Meyer and E. Werner, On the p-affine surface area, Adv. Math. 152 (2000),
288–313. MR MR1764106 (2001g:52012)

88. K. Nomizu, Recent results in affine differential geometry—an introduction and
a survey, Geometry and global analysis (Sendai, 1993), Tohoku Univ., Sendai,
1993, pp. 351–357. MR 1361200 (96k:53012)

89. , Recent developments in affine differential geometry, Sūgaku 46
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