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Overview

I Goal
I A modern framework for affine integral geometry

I Outline
I Euclidean geometry of a convex body
I Constructing affine integral invariants of a convex body

I Homogeneous contour integral
I Homogeneous functions associated with a convex body
I Constructing valuations

I Classification theorems of M. Ludwig
I Hug’s theorem
I Cramér-Rao inequality
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Affine integral geometry

I Object of study
I A convex body K ⊂ Rn is a convex set with non-empty interior
I Often assume origin lies in interior of K

I Affine geometric invariants of K
I Sharp geometric inequalities

I Generalized isoperimetric inequalities

I Ties to other fields
I Functional analysis
I Probability
I Information theory

I Essentially equivalent to the study of “trivial” flat Finsler
manifolds
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Two known approaches

I Local affine differential geometry
I Local differential geometry of a hypersurface in Euclidean

space
I Prolongation beyond second derivatives required
I Works for only sufficiently smooth convex bodies

I Global affine integral geometry
I What this talk is about
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Euclidean geometry of a convex body K ⊂ Rn

I Intrinsic geometry of boundary ∂K
I Induced Riemannian metric g
I Induced surface area measure dA
I Gauss curvature κ
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Euclidean geometry of a convex body K ⊂ Rn

I Local extrinsic geometry
I Gauss map ν : ∂K → Sn−1

I Second fundamental form II = ∂ν : ∂K → Sym2 ν⊥(x)
I Symmetric functions of principal curvatures (eigenvalues of II)

I Global extrinsic geometry
I Volume of K
I Surface area of K
I Center of mass of K
I Legendre-Binet ellipsoid (covariance metric of uniform

distribution on K )
I Integral of curvature function over K
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The Euclidean isoperimetric inequality

If B is the standard unit ball in Rn, then

Vn−1(∂K )

V (K )(n−1)/n
≥ Vn−1(∂B)

V (B)(n−1)/n

Equality holds if and only if K is a ball
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Affine geometry of a convex body

I Desirable features
I Invariant or equivariant under linear transformations
I (optional) Invariant under translations
I Works for arbitrary (not necessarily smooth) convex bodies

I Basic tools available
I First and second derivatives of boundary

I First derivative is L∞ (boundary is Lipschitz)
I Second derivative is a measure

I Integration, i.e. averaging
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Volume invariants

I Volume itself is not scale invariant and therefore not affine
invariant

I But relative volume is
I Given two convex bodies K and L, V (K )/V (L) is invariant

under affine transformations

I Another is the uniform probability measure on K ,

dµ =
dx

V (K )

I Used for averaging
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Two known ways of constructing more affine invariants

I Optimize a scale invariant Euclidean invariant

I Affine average of a lower dimensional geometric invariant

10 / 46



An affine surface area for a convex body K via optimization

I For each inner product g on Rn, let Vg be the volume of K
and Sg be the surface area of ∂K with respect to g .

I Minimize Sg/V
(n−1)/n
g over all inner products g .

I Euclidean isoperimetric inequality implies an affine
isoperimetric inequality, where equality holds if and only if K
is an ellipsoid

I Nothing particularly new or interesting
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Euclidean surface area equals average shadow area

I If u ∈ Sn−1, let πu : Rn → u⊥ denote orthogonal projection

I Area of shadow in direction u

Vn−1(πuK ) =
1

2

∫
∂K
|ν(x) · u| dA

I Average shadow area∫
Sn−1

Vn−1(πuK ) du =
1

2

∫
Sn−1

∫
∂K
|ν(x) · u| dA du

=
1

2

∫
∂K

∫
Sn−1

|ν(x) · u| du dA

=

(
1

2

∫
Sn−1

|en · u| du
)∫

∂K
dA

= V (Bn−1)Vn−1(∂K )
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Another affine surface area equals affine average of shadow
area

I Euclidean surface area

S =
1

Vn−1(Sn−1)

∫ (
1

2

∫
∂K
|ν(x) · u| dA

)
du

I Affine surface area

A =

(
1

Vn−1(Sn−1)

∫ (
1

2

∫
∂K
|ν(x) · u| dA

)−n
du

)−1/n

But why is this affine invariant?
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Another affine isoperimetric inequality

I Affine surface area

A =

(
1

Vn−1(Sn−1)

∫ (
1

2

∫
∂K
|ν(x) · u| dA

)−n
du

)−1/n

I Another affine isoperimetric inequality

A ≥ V (n−1)/n

Equality holds if and only if K is an ellipsoid

I Proved using Steiner symmetrization

I Implies the Euclidean isoperimetric inequality using Holder
inequality

I Is much stronger than Euclidean inequality

I But why is A/V (n−1)/n affine invariant?
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Constructing affine geometric invariants of a convex body

I Use homogeneous functions instead of tensors
I Use the support function and its derivatives

I Its first derivative is essentially the Gauss map
I Its second derivative is essentially the second fundamental form

I Define valuations using the homogeneous contour integral
I With integrand equal to a function of the support function and

its derivatives

I Invariants of a convex body are also invariants of its polar
I Use Legendre transform to map between them

I For scalar invariants this is a theorem of Hug

I Classification theorems of Ludwig, Reitzner, Schuster, Haberl,
and others show that this construction gives all possible affine
invariant valuations
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Preliminaries

I For convenience, we fix an origin and a choice of Lebesgue
measure on affine space

I Let X denote an n-dimensional vector space and dx the
Lebesgue measure

I Let X ∗ denote the dual vector space and dξ the dual
Lebesgue measure

I Both measures are homogeneous of degree n

I Let 〈ξ, x〉 ∈ R denote the natural evaluation map for each
ξ ∈ X ∗ and x ∈ X

I Note that the identity map x : X → X is itself a vector field,
sometimes written in co-ordinates as

x = x i
∂

∂x i
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Homogeneous functions and differential n-forms

I A function h : X → R is homogeneous of degree d if
h(tx) = tdh(x) for each x ∈ X and t > 0

I A differential n-form µ on X is homogeneous of degree d if
D∗t µ = tdµ for each t > 0, where Dt(x) = tx for each x ∈ X

I A differential n-form µ = m(x) dx is homogeneous of degree d
if and only if m is homogeneous of degree d − n

I A differential n-form µ = m(x) dx is homogeneous of degree 0
if and only if

0 =
d

dt

∣∣∣∣
t=0

D∗t µ = Lxµ = d(xcµ)
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The homogeneous contour integral

I If µ = m(x) dx is a differential n-form homogeneous of degree
0 on X , define the homogeneous contour integral of µ to be∮

X
µ =

∫
∂Ω

xcµ =

∫
∂Ω

m(x) xcdx ,

where Ω is a bounded domain containing the origin in its
interior.

I The value of this integral does not depend on the domain Ω.
I If Ω′ ⊂⊂ Ω,∫

∂Ω

xcµ−
∫
∂Ω′

xcµ =

∫
Ω\Ω′

d(xcµ) = 0.

I This integral was defined using only the natural linear
operations on X and the Lebesgue measure dx . No inner
product or norm on X was used at all.
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Explicit formulas for the homogeneous contour integral

If m is homogeneous of degree −n, then

I if X = Rn, Ω is the standard unit ball, Sn−1 its boundary, and
du the standard surface area measure on Sn−1, then∮

X
m(x) dx =

∫
Sn−1

m(u) du,

I if h is homogeneous of degree 1 and χ : (0,∞)→ [0,∞) is
continuous and compactly supported, then∮

X
m(x) dx =

(∫
X
χ(h(x))m(x) dx

)/(∫ ∞
0

χ(t)t−1 dt

)
.

The value of the right side does not depend on the functions
h and χ.
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The homogeneous contour integral for a homogeneous
measure

I A measure ω on X\{0} is homogeneous of degree 0, if for
each measurable set E ⊂ X\{0} and t > 0, ω(tE ) = ω(E ).

I The homogeneous contour integral of ω is defined to be∮
X
ω =

ω(λΩ\Ω)

log λ
,

where Ω ⊂ X is a star domain and λ > 1.

I The right side does not depend on either λ or Ω.
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Homogeneous vector calculus

The homogeneous contour integral satisfies the standard formulas
of integral calculus.

I Integration by parts. If f is homogeneous of degree d and g
is homogeneous of degree −n − d + 1, then∮

X
f (x)∂g(x) dx = −

∮
X
g(x)∂f (x) dx .

I Change of variables. If X and Y are n-dimensional vector
spaces, Φ : X → Y a differentiable map homogeneous of
degree 1, dx and dy Lebesgue measures on X and Y
respectively, and ψ : Y → R a homogeneous function of
degree −n, then∮

Y
ψ(y) dy =

∮
X
ψ(Φ(x)) det ∂Φ(x) dmX (x).
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Homogeneous functions associated with a convex body K

I The polar support function h∗K : X → R

h∗K (x) = inf
{
λ > 0 :

x

λ
∈ K

}
I The support function hK : X ∗ → R

hK (ξ) = sup{〈ξ, x〉 : x ∈ K}

I Both functions above are convex and homogeneous of degree
1

I Let φK = 1
2h

2
K and φ∗K = 1

2 (h∗K )2

I Both φK and φ∗K are convex and homogeneous of degree 2

I We shall always assume that φK : X ∗\{0} → (0,∞) and
φ∗K : X\{0} → (0,∞) are twice differentiable and have
positive definite second derivatives
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The affine Gauss map

I The map
∂φ∗K = h∗K∂h

∗
K : X → X ∗

is a diffeomorphism homogeneous of degree 1
I It is the affine analogue of the Gauss map

I If X = X ∗ = Rn, then the Gauss map of ∂K is given by

ν(x) =
∂φ∗K (x)

|∂φ∗K (x)|

for each x ∈ ∂K
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The affine inverse Gauss map

I The map
∂φK = hK∂hK : X ∗ → X

is a diffeomorphism homogeneous of degree 1
I It is the affine analogue of the inverse Gauss map

I If X = X ∗ = Rn, then the inverse Gauss map of ∂K is given by

ν−1(u) = ∂hK (u) =
∂φK (u)

hK (u)

for each u ∈ Sn−1

I ∂φK and ∂φ∗K are inverse maps
I ∂φK (∂φ∗K (x)) = x for each x ∈ X
I ∂φ∗K (∂φK (ξ)) = ξ for each ξ ∈ X ∗
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The affine second fundamental form

I The map

∂2φ∗K = (h∗K∂
2h∗K + ∂h∗K ⊗ ∂h∗K ) : X → Sym2 X ∗

is homogeneous of degree 0

I We assume that ∂2φ∗K (x) is positive definite for each
x ∈ X\{0}

I It is the affine analogue of the second fundamental form
I If X = X ∗ = Rn, x ∈ ∂K , and v ∈ Tx∂K , then

v · II(x)v =
v · ∂2φ∗K (x)v

|∂φ∗K (x)|

for each x ∈ ∂K
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The affine inverse second fundamental form

I The map

∂2φK = (hK∂
2hK + ∂hK ⊗ ∂hK ) : X ∗ → Sym2 X

is homogeneous of degree 0

I We assume that ∂2φK (ξ) is positive definite for each
ξ ∈ X ∗\{0}

I It is the affine analogue of the inverse second fundamental
form

I If X = X ∗ = Rn, x ∈ ∂K , and v ∈ Tx∂K , then

v · II−1(x)v = (v · ∂2φK (∂φ∗K (x))v)|∂φ∗K (x)|

for each x ∈ ∂K
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The curvature function

I The differential n-form dx on X induces a determinant
function det : Sym2 X → R

I The curvature function of a convex body K is defined to be
the function fK : X ∗ → R satisfying

det ∂2φK (ξ) = hK (ξ)n+1fK (ξ)

I The curvature function fK is homogeneous of degree −n − 1.
I It is the affine analogue of the reciprocal Gauss curvature

I If X = X ∗ = Rn, then

1

κ(x)
= fK (ν(x))
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The polar curvature function

I The differential n-form dξ on X ∗ induces a determinant
function det : Sym2 X ∗ → R

I The polar curvature function of a convex body K is defined to
be the function f ∗K : X → R satisfying

det ∂2φ∗K (x) = h∗K (x)n+1f ∗K (x)

I The polar curvature function f ∗K is homogeneous of degree
−n − 1.

I It is the affine analogue of the Gauss curvature
I If X = X ∗ = Rn, then

κ(x) = (x · ν(x))n+1f ∗K (x),

for each x ∈ ∂K
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Valuations

I Let C(X ) denote the space of convex bodies in X

I A valuation is essentially a finitely additive measure on C(X )

I If Y is an additive semigroup and S ⊂ C(X ), then a Y -valued
valuation on S is a map Φ : S → Y such that

Φ(K ∪ L) + Φ(K ∩ L) = Φ(K ) + Φ(L),

for each K , L ∈ S such that K ∩ L,K ∪ L ∈ S .

I Any integral invariant of a convex body is a valuation
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Ingredients for building affine invariant valuations

I Homogeneous contour integral on X or X ∗

I Natural homogeneous functions
I Natural evaluation map 〈·, ·〉 : X ∗ × X → R
I Identity vector fields x : X → X and ξ : X ∗ → X ∗

I Homogeneous measures dx on X and dξ on X ∗

I Homogeneous functions associated with a convex body
K ⊂ X

I Support function hK and polar support function h∗K
I Curvature function fK and polar curvature function f ∗K
I First and second partial derivatives of support and polar

support functions
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Proposition

Let C2(X ) denote the space of all convex bodies in X with C 2

support functions. Given a vector space Y and a measurable
function ψ : X ∗ × R× X × S2

+X → Y such that
ψ(·, hK (·), ∂hK (·), ∂2hK (·)) is homogeneous of degree −n, the map
Ψ : C2(X )→ Y given by

Ψ(K ) =

∮
X∗
ψ(ξ, hK (ξ), ∂hK (ξ), ∂2hK (ξ)) dξ,

for each K ∈ C2(X ), is a valuation.
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The polar projection body of a convex body K

I Given a convex body K and x ∈ X , the area of the shadow in
direction x is proportional to

h∗Π∗K (x) =
1

V (K )

∮
|〈ξ, x〉|fK (ξ) dξ.

I This defines a new convex body Π∗K ⊂ X naturally
associated with K , known as the polar projection body.

I The volume of Π∗K is given by

V (Π∗K ) =
1

n

∮
[h∗Π∗K (x)]−n dx

I V (Π∗K ) can be viewed as an affine average of shadow area
and therefore as an affine surface area

I It is equivariant under linear transformations. Given any
invertible linear transformation A : X → X and x0 ∈ X ,

Π∗(AK ) = AΠ∗K
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The projection body of a function f : X → R

Given a smooth decaying function f : X → R, define the polar
projection body Π∗f by

h∗Π∗f (v) =

∫
|〈v , ∂f (x)〉| dx
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Sharp affine isoperimetric and Sobolev inequalities

Theorem
(Petty projection inequality)

V (Π∗K ) ≥ V (K ),

with equality holding if and only if K is an ellipsoid

Theorem
(Affine Sobolev inequality, G. Zhang, JDG 1999) Given n > 1 and
f : X → R, where dimX = n,

V (Π∗f )−1/n ≤ ‖f ‖n/(n−1).

Equality if and only if f is a generalized Gaussian.
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Duality

Given the function ψ : X ∗ × R× X × S2
+X → Y as before, there

exists a dual function ψ∗ : X × R× X ∗ × S2
+X
∗ → Y such that∮

X∗
ψ(ξ, hK (ξ), ∂hK (ξ), ∂2hK (ξ)) dξ

=

∮
X
ψ∗(x , hK∗(x), ∂hK∗(x), ∂2hK∗(x)) dx

for each K ∈ C2(X ).
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Homogeneous scalar valuations

I Only homogeneous scalar functions on X ∗ associated with a
convex body K are its support function hK and curvature
function fK .

I det ∂2φK = hn+1
K fK is homogeneous of degree 0.

I For each q ∈ (−∞,∞),

Aq(K ) =

∮
X∗

(hn+1
K fK ))

q+n
2n (hK (ξ))−n dξ

defines a homogeneous valuation

I If q ∈ [−n, n], then Aq can be extended to a GL(X )-valuation
of degree q on C(X ).

I An(K ) = cV (K ) and A−n(K ) = c∗V (K ∗)

I Aq(K ) is the Lp affine surface area, where

p =
n(n − q)

n + q
.
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Theorem of Ludwig and Reitzner

Any upper semicontinuous real-valued valuation on C(X ) that is
GL(X )-homogeneous of degree q ∈ [−n, n] is, up to a constant
factor, equal to Aq.
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The Legendre Transform

I Given K ∈ C2(X ) such that K ∗ ∈ C2(X ∗), the differential of
φK , ∂φK : X ∗ → X is a homogeneous diffeomorphism

I If x = ∂φK (ξ), then

hK∗(x) = hK (ξ)

ξ = ∂φK∗(x)

∂2φK (ξ)∂2φK∗(x) = I
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Hug’s Theorem

Since
dx = det ∂2φK (ξ) dξ,

it follows that

Aq(K ∗) =

∮
X∗

(det ∂2φK∗(x))
q+n
2n (hK∗(x))−n dx

=

∮
X∗

(det ∂2φK (ξ))−
q+n
2n (hK (ξ))−n det ∂2φK (ξ) dξ

=

∮
X∗

(det ∂2φK (ξ))
−q+n

2n (hK (ξ))−n dξ

= A−q(K )
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Ellipsoid-valued valuations

I Naturally associated to K are two ellipsoids E2K and E−2K

I The support function of the Legendre ellipsoid is given by

h2
E2K (ξ) =

1

V (K )

∮ (
〈ξ, x〉
h∗K (x)

)2

h∗K (x)−n dx

I The polar support function of the ellipsoid defined by Lutwak,
Yang, and Zhang is given by

(h∗E−2K )2(v) =
1

V (K )

∮ (
〈ξ, v〉
hK (ξ)

)2

hK (ξ)fK (ξ) dξ

I Ludwig has established that under reasonable assumptions
these are the only ellipsoid-valued valuations
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The Cramer-Rao inequality for convex bodies

Theorem
(Lutwak-Yang-Zhang) If K is a convex body, then

E−2K ⊂ E2K

with equality holding if and only if K is an ellipsoid centered at the
origin.
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Elementary inclusion lemma

Lemma
If K , L ⊂ X satisfy

〈ξ, x〉 ≤ hK (ξ)h∗L(x)

for each x ∈ X and ξ ∈ X ∗, then L ⊂ K.
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Proof of the Cramer-Rao inequality for convex bodies

Observe that
〈ξ, v〉 = [〈v , ∂〉, 〈ξ, x〉]

For each ξ ∈ X ∗ and v ∈ X ,

〈ξ, v〉 =
1

nV (K )

∮
X

[〈v , ∂〉, 〈ξ, x〉](h∗K )−n(x) dx

= − 1

V (K )

∮
X
〈ξ, x〉〈v , ∂h∗K (x)〉(h∗K )−n−1(x) dx

≤
(

1

V (K )

∮
X
〈ξ, x〉2(h∗K )−n−2(x) dx

)1/2

·
(

1

V (K )

∮
X
〈v , ∂h∗K (x)〉2(h∗K )−n(x) dx

)1/2

= hE2K (ξ)h∗E−2K (v)
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Other valuations

I There are similar constructions using the homogeneous
contour integral of GL(X )-homogeneous vector-, tensor-, and
body-valued valuations

I Center of mass
I Legendre and LYZ ellipsoids
I Lp-centroid bodies
I Lp-projection bodies

I Theorems of Ludwig show that these constructions produce
all possible continuous GL(X )-homogeneous valuations

I These also satisfy sharp affine geometric inequalities, where
equality holds if and only if it is an ellipsoid

44 / 46



Sharp affine Sobolev inequalities

I There are corresponding invariants associated to a smooth
function (or probability density) on X .

I These satisfy sharp affine Sobolev inequalities (which imply
the classical sharp Sobolev inequalities of Aubin and Talenti:

I Equivalent to information theoretic inequalities for the
entropy, p-th moment, and generalized Fisher information of a
probability distribution

I Equality holds if and only if distribution is a generalized
Gaussian

I Even the 1-dimensional case is interesting:
E. Lutwak, D. Yang, G. Zhang. Cramer-Rao and
moment-entropy inequalities for Renyi entropy and generalized
Fisher information, IEEE Transactions on Information
Theory 51 (2005) 473-478.
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