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Overview

» Goal
» A modern framework for affine integral geometry
» Qutline

» Euclidean geometry of a convex body

» Constructing affine integral invariants of a convex body
» Homogeneous contour integral
» Homogeneous functions associated with a convex body
» Constructing valuations

v

Classification theorems of M. Ludwig
Hug's theorem
Cramér-Rao inequality

v

v
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Affine integral geometry

v

Object of study

» A convex body K C R" is a convex set with non-empty interior
» Often assume origin lies in interior of K

> Affine geometric invariants of K
» Sharp geometric inequalities
» Generalized isoperimetric inequalities
» Ties to other fields
» Functional analysis
» Probability
> Information theory
>

Essentially equivalent to the study of “trivial” flat Finsler
manifolds
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Two known approaches

» Local affine differential geometry
» Local differential geometry of a hypersurface in Euclidean
space
» Prolongation beyond second derivatives required
» Works for only sufficiently smooth convex bodies
> Global affine integral geometry
» What this talk is about
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Euclidean geometry of a convex body K C R”

> Intrinsic geometry of boundary 0K
» Induced Riemannian metric g
» Induced surface area measure dA
» Gauss curvature s
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Euclidean geometry of a convex body K C R”

» Local extrinsic geometry
» Gauss map v : OK — §"!
» Second fundamental form Il = dv : K — Sym® v+ (x)
» Symmetric functions of principal curvatures (eigenvalues of 1)
> Global extrinsic geometry
Volume of K
Surface area of K
Center of mass of K
Legendre-Binet ellipsoid (covariance metric of uniform
distribution on K)
Integral of curvature function over K

vV vy vy

v
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The Euclidean isoperimetric inequality

If B is the standard unit ball in R”, then

Vi_1(9K) Vo_1(9B)

V(K)(nfl)/n - V(B)(nfl)/n

Equality holds if and only if K is a ball
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Affine geometry of a convex body

» Desirable features

» Invariant or equivariant under linear transformations

» (optional) Invariant under translations

» Works for arbitrary (not necessarily smooth) convex bodies
» Basic tools available

» First and second derivatives of boundary

> First derivative is L (boundary is Lipschitz)
» Second derivative is a measure

> Integration, i.e. averaging
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Volume invariants

» Volume itself is not scale invariant and therefore not affine
invariant

» But relative volume is

» Given two convex bodies K and L, V(K)/V(L) is invariant
under affine transformations

» Another is the uniform probability measure on K,

» Used for averaging
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Two known ways of constructing more affine invariants

» Optimize a scale invariant Euclidean invariant

» Affine average of a lower dimensional geometric invariant
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An affine surface area for a convex body K via optimization

» For each inner product g on R”, let V, be the volume of K
and S, be the surface area of OK with respect to g.

> Minimize Sg/V{"™/" over all inner products g.

» Euclidean isoperimetric inequality implies an affine
isoperimetric inequality, where equality holds if and only if K
is an ellipsoid

» Nothing particularly new or interesting
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Euclidean surface area equals average shadow area

» If ue S" 1 let m, : R” — ut denote orthogonal projection

» Area of shadow in direction u

1
Vio1(muK) = 5 /8K lv(x) - u| dA

» Average shadow area

/ Vp_1(muK / / ) - u| dAdu
Snfl Sn 1 6K
/ / ) - u| dudA
oK JSn—1
= </ len - u\du)/ dA
2 Sn— 1 oK

= V(B YV, 1(9K)
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Another affine surface area equals affine average of shadow
area

» Euclidean surface area

ey | (o )

» Affine surface area

A_< Vo a(S" 1)/( / ”‘dA>_nd”>

But why is this affine invariant?

—1/n
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Another affine isoperimetric inequality

» Affine surface area

(s (o ve) )

> Another affine isoperimetric inequality

—1/n

A Z V(n—l)/n

Equality holds if and only if K is an ellipsoid
> Proved using Steiner symmetrization

» Implies the Euclidean isoperimetric inequality using Holder
inequality

> Is much stronger than Euclidean inequality

» But why is A/V("=1/" affine invariant? NYUDO
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Constructing affine geometric invariants of a convex body

v

Use homogeneous functions instead of tensors

> Use the support function and its derivatives

> lts first derivative is essentially the Gauss map

» Its second derivative is essentially the second fundamental form
Define valuations using the homogeneous contour integral

» With integrand equal to a function of the support function and

its derivatives

Invariants of a convex body are also invariants of its polar

» Use Legendre transform to map between them

» For scalar invariants this is a theorem of Hug

Classification theorems of Ludwig, Reitzner, Schuster, Haberl,

and others show that this construction gives all possible affine
invariant valuations

NYU:
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Preliminaries

» For convenience, we fix an origin and a choice of Lebesgue
measure on affine space

» Let X denote an n-dimensional vector space and dx the
Lebesgue measure

» Let X* denote the dual vector space and d§ the dual
Lebesgue measure

» Both measures are homogeneous of degree n
> Let (£, x) € R denote the natural evaluation map for each
e X and x e X
> Note that the identity map x : X — X is itself a vector field,
sometimes written in co-ordinates as
;0

1
x = x'—
ox!
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Homogeneous functions and differential n-forms

» A function h: X — R is homogeneous of degree d if
h(tx) = t9h(x) for each x € X and t > 0

> A differential n-form p on X is homogeneous of degree d if
D;p =ty for each t > 0, where D;(x) = tx for each x € X

» A differential n-form p = m(x) dx is homogeneous of degree d
if and only if m is homogeneous of degree d — n

» A differential n-form p = m(x) dx is homogeneous of degree 0
if and only if

= — D>'< = x :d
0 gt |, Ot Lyp = d(x]p)
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The homogeneous contour integral

» If u = m(x) dx is a differential n-form homogeneous of degree
0 on X, define the homogeneous contour integral of 1 to be

]iuz/BQXJM:/an(X)XJdX,

where € is a bounded domain containing the origin in its
interior.

» The value of this integral does not depend on the domain 2.
» If Q' CccQ,

/BQXJM_/ag,XJ’u:/Q\Q/ d(x|u) =0.

» This integral was defined using only the natural linear
operations on X and the Lebesgue measure dx. No inner

product or norm on X was used at all. NYUDOly
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Explicit formulas for the homogeneous contour integral

If m is homogeneous of degree —n, then

» if X = R", Q is the standard unit ball, S"~1 its boundary, and
du the standard surface area measure on S"1, then

7{( m(x) dx = /5"1 m(u) du,

» if h is homogeneous of degree 1 and x : (0,00) — [0,00) is
continuous and compactly supported, then

jim(x) dx = </X X (h(x))m(x) dx> / </Ooox(t)t_1 dt).

The value of the right side does not depend on the functions
h and x.

NYU:DOI

19 /46



The homogeneous contour integral for a homogeneous
measure

» A measure w on X\{0} is homogeneous of degree 0, if for
each measurable set E C X\{0} and t > 0, w(tE) = w(E).

» The homogeneous contour integral of w is defined to be

j{ ~ w(A2\Q)
Xw— log A

)

where Q C X is a star domain and A > 1.
» The right side does not depend on either A or Q.
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Homogeneous vector calculus

The homogeneous contour integral satisfies the standard formulas
of integral calculus.
» Integration by parts. If f is homogeneous of degree d and g
is homogeneous of degree —n — d + 1, then

j{( f(x)0g(x)dx = —f;(g(x)af(x) dx.

» Change of variables. If X and Y are n-dimensional vector
spaces, ® : X — Y a differentiable map homogeneous of
degree 1, dx and dy Lebesgue measures on X and Y
respectively, and ¥ : Y — R a homogeneous function of
degree —n, then

74 b(y) dy:f H(®(x)) det D(x) dmx (x).
Y X
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Homogeneous functions associated with a convex body K
» The polar support function hi : X — R

h*K(x):inf{)\>0 : EEK}

v

The support function hx : X* =+ R

h(€) = sup{(€.x) : x € K}

v

Both functions above are convex and homogeneous of degree
1

Let ¢k = 2h% and ¢} = 3(hj)?
Both ¢k and ¢}, are convex and homogeneous of degree 2

We shall always assume that ¢k : X*\{0} — (0,00) and
¢k X\{0} — (0, 00) are twice differentiable and have
positive definite second derivatives

v

v

v
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The affine Gauss map

» The map
0oy = hidhy + X — X*
is a diffeomorphism homogeneous of degree 1
» It is the affine analogue of the Gauss map
» If X = X* = R", then the Gauss map of 9K is given by
99k (x)

Y= B

for each x € OK

NYU:DOI
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The affine inverse Gauss map

» The map
8¢K = hKahK X=X

is a diffeomorphism homogeneous of degree 1
> It is the affine analogue of the inverse Gauss map
» If X = X* = R", then the inverse Gauss map of 9K is given by

v (u) = O (u) = afi’ig‘;)

for each u e S"1

» O¢k and O¢j, are inverse maps
» 0pk(0d5(x)) = x for each x € X
> 005 (00K (§)) = € for each £ € X*

NYU:DOI
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The affine second fundamental form

> The map
Poy = (hdhjc + Ohf ® Ohi) : X — Sym? X*

is homogeneous of degree 0
» We assume that 9%¢j(x) is positive definite for each
x € X\{0}

> It is the affine analogue of the second fundamental form
» If X = X*=R", x € 0K, and v € T 0K, then

. XV*V~82¢7<(X)V
Y = g (]

for each x € OK
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The affine inverse second fundamental form

> The map
Pox = (hkdhi + Ohy @ Bh) - X* — Sym? X

is homogeneous of degree 0
» We assume that 9%2¢k(€) is positive definite for each

§ € X*\{0}
> It is the affine analogue of the inverse second fundamental

form
» If X =X*=R", xe€ 9K, and v € T,OK, then

v X = (v 020k (805 (x))v) |05 ()]

for each x € OK
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The curvature function

v

The differential n-form dx on X induces a determinant
function det : Sym?> X — R

v

The curvature function of a convex body K is defined to be
the function fx : X* — R satisfying

det Ppi(€) = hi(€)" 1k (€)

v

The curvature function fx is homogeneous of degree —n — 1.

v

It is the affine analogue of the reciprocal Gauss curvature
» If X = X* = Rn, then

NYU:DOI
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The polar curvature function

» The differential n-form d¢ on X* induces a determinant
function det : Sym? X* — R

» The polar curvature function of a convex body K is defined to
be the function f¢ : X — R satisfying

det 9 Gc(x) = hic(x)" " g(x)

» The polar curvature function fg is homogeneous of degree
—n—1.
> It is the affine analogue of the Gauss curvature
» If X = X* =R", then

R(x) = (x - ()" (),

for each x € OK
NYUROY
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Valuations

v

Let C(X) denote the space of convex bodies in X

v

A valuation is essentially a finitely additive measure on C(X)

If Y is an additive semigroup and S C C(X), then a Y-valued
valuation on S isa map ® : S — Y such that

v

O(K UL) + S(K N L) = &(K) + (L),

for each K, L € Ssuchthat KNL,KUL€S.
> Any integral invariant of a convex body is a valuation

NYU:DOI
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Ingredients for building affine invariant valuations

v

Homogeneous contour integral on X or X*

v

Natural homogeneous functions

» Natural evaluation map (-,-) : X* x X = R
» Identity vector fields x : X — X and £ : X* — X*

v

Homogeneous measures dx on X and d§ on X*

v

Homogeneous functions associated with a convex body
KcX
» Support function hx and polar support function hj
» Curvature function fx and polar curvature function fg
» First and second partial derivatives of support and polar
support functions

NYU:DOI
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Proposition

Let C?(X) denote the space of all convex bodies in X with C?
support functions. Given a vector space Y and a measurable
function ¥ : X* x R x X x SerX — Y such that

(-, hi(-), Ohk(+), 0*hk(+)) is homogeneous of degree —n, the map
W : C%(X) — Y given by

V(K) = . P(&, h(€), Ohk (€), 9 h (€)) d€,

for each K € C?(X), is a valuation.

NYU:DOI
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The polar projection body of a convex body K

» Given a convex body K and x € X, the area of the shadow in
direction x is proportional to

k() = V(lK) f (€ x) i (€) de.

» This defines a new convex body M*K C X naturally
associated with K, known as the polar projection body.
» The volume of [1"K is given by

V(M*K) = if[h**,((x)]—" dx

» V(M*K) can be viewed as an affine average of shadow area
and therefore as an affine surface area

» It is equivariant under linear transformations. Given any
invertible linear transformation A: X — X and xp € X,

M*(AK) = A" K NYUPOly
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The projection body of a function f : X — R

Given a smooth decaying function f : X — R, define the polar
projection body M*f by

s (v) = / (v, 0F (x))] dx

NYU:POLY
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Sharp affine isoperimetric and Sobolev inequalities

Theorem
(Petty projection inequality)

V(MK) = V(K),
with equality holding if and only if K is an ellipsoid

Theorem
(Affine Sobolev inequality, G. Zhang, JDG 1999) Given n > 1 and
f: X =R, wheredim X = n,

V()" < |y n-1)-
Equality if and only if f is a generalized Gaussian.

NYU:DOI
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Duality

Given the function 1 : X* x R x X x §2X — Y as before, there
exists a dual function ¥* : X x R x X* x S?rX* — Y such that

. V(€ hi(€), 0hk(€), 0%hk(€)) d&
- fx (%, hice (x), Dhic- (x), Py (x)) dx

for each K € C?(X).

NYU:DOI
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Homogeneous scalar valuations

>

Only homogeneous scalar functions on X* associated with a
convex body K are its support function hx and curvature
function fk.

det 0% = h';flfK is homogeneous of degree 0.
For each g € (—o0, >0),

Aq(K) = 74 (B ) o (ki (€))7 g

defines a homogeneous valuation

If g € [—n, n], then Aq can be extended to a GL(X)-valuation
of degree g on C(X).

An(K) = cV(K) and A_,(K) = c*V(K*)

Aq(K) is the L, affine surface area, where

_n(n—q)
T n+gq NYUpOly
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Theorem of Ludwig and Reitzner

Any upper semicontinuous real-valued valuation on C(X) that is
GL(X)-homogeneous of degree g € [—n, n] is, up to a constant
factor, equal to Ag.

NYU:DOI
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The Legendre Transform

» Given K € C?(X) such that K* € C?(X*), the differential of
oK, Ok : X* — X is a homogeneous diffeomorphism

> If x = 0¢k (&), then
hk+(x) = hk(€)
§ = 0pk+(x)
P ok (£)Ppr+(x) =1

NYU:DOI
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Hug's Theorem

Since
dx = det 820k (€) d€,

it follows that
AK*) = . (det o () S (e () " o
—  (etPon(e) %

X*

= (et o) H (he(6) " de
= A_4(K)

(hi(€))™" det PPk (€) d€

NYU:DOI
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Ellipsoid-valued valuations

v

Naturally associated to K are two ellipsoids E;K and E_»K

v

The support function of the Legendre ellipsoid is given by

- § (52 o

The polar support function of the ellipsoid defined by Lutwak,
Yang, and Zhang is given by

v

2
(e P = s § (1) M(O(€) o

Ludwig has established that under reasonable assumptions
these are the only ellipsoid-valued valuations

v
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The Cramer-Rao inequality for convex bodies

Theorem
(Lutwak-Yang-Zhang) If K is a convex body, then

E»K C BK

with equality holding if and only if K is an ellipsoid centered at the
origin.

NYU:POLY
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Elementary inclusion lemma

Lemma
If K,L C X satisfy

(&, x) < hk(&)hi(x)
for each x € X and & € X*, then L C K.

NYU:pOly
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Proof of the Cramer-Rao inequality for convex bodies

Observe that
<€7 V> = [<V7 8>7 <€’X>]
For each £ € X* and v € X,

(€)= iy P00 (6 1B )
! oh hi) " H(x)d
(K);f (€30 v, B3 (i)~ (x)

Y
< (v ftex2m0 2 dx)m

1/2
(V(IK) 0021500 dx>
(O (V)

= hg,k

NYU:DOI
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Other valuations

» There are similar constructions using the homogeneous
contour integral of GL(X)-homogeneous vector-, tensor-, and
body-valued valuations

» Center of mass

Legendre and LYZ ellipsoids

L,-centroid bodies

L,-projection bodies

v VvYyy

» Theorems of Ludwig show that these constructions produce
all possible continuous GL(X)-homogeneous valuations

» These also satisfy sharp affine geometric inequalities, where
equality holds if and only if it is an ellipsoid

NYU:DOI
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Sharp affine Sobolev inequalities

» There are corresponding invariants associated to a smooth
function (or probability density) on X.

» These satisfy sharp affine Sobolev inequalities (which imply
the classical sharp Sobolev inequalities of Aubin and Talenti:

» Equivalent to information theoretic inequalities for the
entropy, p-th moment, and generalized Fisher information of a
probability distribution

» Equality holds if and only if distribution is a generalized
Gaussian

> Even the 1-dimensional case is interesting:
E. Lutwak, D. Yang, G. Zhang. Cramer-Rao and
moment-entropy inequalities for Renyi entropy and generalized
Fisher information, IEEE Transactions on Information
Theory 51 (2005) 473-478.
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