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Abstract. Associated with each body K in Euclidean n-space Rn is an ellipsoid Γ2K
called the Legendre ellipsoid of K. It can be defined as the unique ellipsoid centered at the
body’s center of mass such that the ellipsoid’s moment of inertia about any axis passing
through the center of mass is the same as that of the body.

In an earlier paper the authors showed that corresponding to each convex body K ⊂ Rn
is a new ellipsoid Γ−2K that is in some sense dual to the Legendre ellipsoid. The Legendre
ellipsoid is an object of the dual Brunn–Minkowski theory, while the new ellipsoid Γ−2K is
the corresponding object of the Brunn–Minkowski theory.

The present paper has two aims. The first is to show that the domain of Γ−2 can be
extended to star-shaped sets. The second is to prove that the following relationship exists
between the two ellipsoids: If K is a star shaped set, then

Γ−2K ⊂ Γ2K,

with equality if and only if K is an ellipsoid centered at the origin. This inclusion is the
geometric analogue of one of the basic inequalities of information theory – the Cramer-Rao
inequality.

Associated with each body K in Euclidean n-space Rn is an ellipsoid Γ2K called the
Legendre ellipsoid of K. The Legendre ellipsoid is a basic concept from classical mechanics.
It can be defined as the unique ellipsoid centered at the body’s center of mass such that the
ellipsoid’s moment of inertia about any axis passing through the center of mass is the same
as that of the body.

In [26] the authors showed that corresponding to each convex body K ⊂ R
n is a new

ellipsoid Γ−2K. The results in this paper hint at a remarkable duality between this new
ellipsoid and the Legendre ellipsoid.

The present paper has two aims. The first is to show that the domain of Γ−2 can be
extended to star-shaped sets. The second is to prove that the following relationship exists
between the two ellipsoids: If K is a star shaped set, then

(1) Γ−2K ⊂ Γ2K,

with equality if and only if K is an ellipsoid centered at the origin. This inclusion is the
geometric analogue of one of the basic inequalities of information theory – the Cramer-Rao
inequality.

The Brunn-Minkowski theory (often called the theory of mixed volumes) is the heart of
analytic convex geometry. Many of the fundamental ingredients of the theory were developed
by Minkowski a century ago. Schneider’s book [28] is the classical reference for the subject.

Over the years the tools of the Brunn-Minkowski theory have proven to be remarkably
effective in solving inverse problems for which the data involves projections of convex bodies.
A quarter of a century ago, the elements of a dual Brunn-Minkowski theory were introduced
in [22] (and related papers). The basic idea of the dual theory is to replace the projections
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of the Brunn-Minkowski theory with intersections. In [23] it was shown that there is in
fact a “dictionary” between the theories. Not only do concepts like the “elementary mixed
volumes” of the classical theory become the “elementary dual mixed volumes” of the dual
theory, but even objects such as the “projection bodies” of the Brunn-Minkowski theory have
dual counterparts, “intersection bodies”, in the dual theory. In fact, it was this dual notion
of “intersection body” that played a key role in the ultimate solution of the Busemann-Petty
problem (see e.g. Gardner [11, 12, 13], Zhang [29, 30], Koldobsky [17, 18, 19, 20], Gardner,
Koldobsky, and Schlumprecht [15]). Gardner’s book on geometric tomography [14] is an
excellent reference for the interplay between the classical and dual theories.

Minkowski showed that what was to become known as the Brunn-Minkowski theory could
be developed naturally by combining the notion of volume with an addition of convex bodies
now known as Minkowski addition. In the early 1960’s, Firey [9] introduced and studied an
Lp generalization of Minkowski addition. In the 1990’s, in [24, 25], these Minkowski-Firey
Lp-sums were combined with the notion of volume to form embryonic Lp versions of the
Brunn-Minkowski theory.

It is easily seen that the classical Legendre ellipsoid belongs to the dual Brunn-Minkowski
theory. This observation led the authors to the obvious question: What is the dual analog
of the Legendre ellipsoid in the Brunn-Minkowski theory? The answer was given by the new
ellipsoid introduced in [26]. This new ellipsoid actually belongs to the L2-Brunn-Minkowski
theory.

The nature of the duality between the Brunn-Minkowski theory and the dual Brunn-
Minkowski theory is not understood. The objects of study of the Brunn-Minkowski theory
are convex bodies, while the objects of study of the dual Brunn-Minkowski theory are star
bodies. The basic functionals of the Brunn-Minkowski theory are often expressed as integrals
involving the support and curvature functions. The basic functionals of the dual Brunn-
Minkowski theory are integrals involving radial functions. A first step in understanding the
nature of the duality between the Brunn-Minkowski theory and its dual is to extend some
of the functionals of the Brunn-Minkowski theory so that they are defined for star bodies
(rather than convex bodies) and to provide new definitions of these functionals that involve
only radial functions (rather than support and curvature functions). In this article, this first
step is accomplished for one object of the Brunn-Minkowski theory: the Γ−2-ellipsoid.

One of the central problems in information theory is how to extract useful information
from noisy signals. Let x0 ∈ Rn be the transmitted signal. A simple model for the received
signal is a random vector x ∈ Rn with a probability distribution p(x− x0) dx on Rn, where
the probability measure p(x) dx has mean 0.

Suppose that the same signal is transmitted repeatedly and that x1, . . . , xN are the received
signals. What is the best estimate for the transmitted signal, and what is the error of this
estimate?

One possible estimate is the mean

x =
x1 + · · ·+ xN

N
.

By the central limit theorem, as N becomes large, the distribution of the random variable x
approaches a Gaussian with mean x0 and covariance matrix C/

√
N , where the matrix C is

given by

Cij =

∫
Rn

xixjp(x) dx.
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Another estimate is the maximum likelihood estimate xM , which is obtained by maximizing
the log–likelihood function

L(x) =
N∑
i=1

log p(xi − x).

Fisher [10] and Doob [7] (also, see Appendix I of [1]) showed that as N becomes large, the
distribution of the random variable xM approaches a Gaussian with mean x0 and covariance
matrix F−1/

√
N , where the matrix F is known as the Fisher information matrix and is given

by

Fij =

∫
Rn

∂(log p)

∂xi
∂(log p)

∂xj
p dx.

A fundamental result in information theory is the Cramer-Rao inequality (see, for example,
[5]), which states that the covariance and Fisher information matrices satisfy the inequality

(2) v · Cv ≥ v · F−1v,

for all v ∈ Rn. Moreover, equality holds for all v ∈ Rn if and only if the distribution p is
Gaussian. The Cramer-Rao inequality is important, because it shows that the error in the
maximum likelihood estimate is smaller than the mean estimate and that the mean estimate
is optimal only if the distribution is Gaussian.

It has previously been observed [4, 5, 6] that there exists some connection between the
subject of information theory and the Brunn-Minkowski theory. The authors believe that
the true connection is between information theory and the L2-Brunn-Minkowski theory.
The authors have found small bits of an embryonic “dictionary” connecting the subject of
information theory and the L2-Brunn-Minkowski theory. In this dictionary a probability
distribution corresponds to a convex body and the entropy power of the distribution to the
volume of the body.

Associated with the covariance matrix C of a probability distribution is the ellipsoid

EC = {v ∈ Rn : v · C−1v ≤ 1}.

In our dictionary this ellipsoid corresponds to the Legendre ellipsoid Γ2K of a convex body
K. Associated with the Fisher information matrix F is the ellipsoid

EF = {v ∈ Rn : v · Fv ≤ 1},

which corresponds to the ellipsoid Γ−2K. The Cramer–Rao inequality (2) is equivalent to
the statement that

(3) EF ⊂ EC ,

with equality holding if and only if the probability distribution is Gaussian. Using the
dictionary, the main result of this paper, (1), corresponds to (3).

The definition of the Γ−2–ellipsoid uses the derivative of the radial function of the star
body and therefore would appear to require some differentiability assumptions for the star
body. We show that, remarkably, no such assumptions are necessary for either the definition
or the results of this paper.
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1. Notation and overview

A bounded set K ⊂ Rn that is star–shaped about the origin is uniquely determined by its
radial function, ρK : Rn\{0} → R, where

ρK(x) = sup{λ ≥ 0 : λx ∈ K}.
A star body is a bounded set that is star-shaped about the origin and whose radial function
is positive and continuous.

Throughout this paper the boundary of K will be denoted ∂K, and dy will denote the
density associated with the (n− 1)–dimensional Hausdorff measure on ∂K. The unit sphere
in Rn will be denoted Sn−1, and the density associated with (n− 1)–dimensional Hausdorff
measure on Sn−1 will be denoted du.

Given a convex body K ⊂ Rn containing the origin in its interior, the ellipsoid Γ−2K was
defined in [26] as the body whose radial function is given by

(4) ρΓ−2K(x)−2 =
1

V (K)

∫
∂K

(x · ν(y))2

y · ν(y)
dy,

where · denotes the standard inner product on Rn, ν(y) ∈ Sn−1 is the outer unit normal at
y ∈ ∂K. This formula can be used to define Γ−2K for any body K ⊂ Rn with sufficiently
smooth boundary.

In §2 we use polar coordinates to obtain the following new formula for Γ−2K:

Proposition 3. Given a convex body K ⊂ Rn and x ∈ Rn\{0},

ρΓ−2K(x)−2 =
1

V (K)

∫
Sn−1

(x · ∇ρK(u))2ρK(u)n−4 du.

In §§3–5 we present preliminary definitions and lemmas that are needed for the remainder
of the paper.

We show in §6 how to define for a star body K ⊂ Rn the set Γ−2K ⊂ Rn. In §10 it will
also be shown that this set is an ellipsoid that is possibly degenerate. If the boundary of K
is Lipschitz, then Γ−2K is a nondegenerate ellipsoid. On the other hand, if the boundary of
K is sufficiently singular, then Γ−2K is just a single point, namely the origin.

The following extension of Lemma 1* in [26] is proved in §7:

Lemma 13. If K ⊂ Rn is a star body and φ ∈ GL(n),

Γ−2φK = φΓ−2K.

In §8 we derive a formula for the volume of K, and in §9 we use this formula to establish
our main result:

Theorem. If K ⊂ Rn is a star body, then

Γ−2K ⊂ Γ2K,

with equality holding if and only if K is an ellipsoid centered at the origin.

Recall that a set E ⊂ Rn is an ellipsoid centered at the origin, if there exists an n × n
positive definite symmetric matrix A such that

E = {x : x · Ax ≤ 1}.
A set E ⊂ Rn is a degenerate ellipsoid centered at the origin if there exists a proper subspace
L ⊂ Rn such that E ⊂ L and E is an ellipsoid in L.



THE CRAMER–RAO INEQUALITY FOR STAR BODIES 5

2. A new formula for the Γ−2–ellipsoid

Given a convex body K ⊂ R
n containing the origin in its interior, there is a natural

parameterization of the boundary ∂K given by the map φK : Sn−1 → ∂K, where Sn−1 ⊂ Rn
is the unit sphere and

φK(u) = ρK(u)u.

Moreover, the radial function ρK is Lipschitz and, for almost every y ∈ ∂K, there exists a
unique outer unit normal ν(y) to ∂K at y (see, for example, page 53 of [28] for a proof of
these facts).

When the meaning is clear, the subscript K in ρK and φK may be suppressed. To change
the variable of integration in (4) from y ∈ ∂K to u ∈ Sn−1, the following two lemmas are
needed.

Lemma 1. If K ⊂ Rn is a convex body containing the origin in its interior, then for almost
every u ∈ Sn−1:

ν(φ(u))

φ(u) · ν(φ(u))
= −∇ρ(u)

ρ(u)2
,

where ∇ρ denotes the gradient of ρ in Rn.

Proof. Since ρ is constant along the boundary ∂K, its gradient is normal to the boundary.
In other words, given y ∈ ∂K, there exists λ(y) ∈ R such that

∇ρ(y) = λ(y)ν(y).

On the other hand, since ρ is homogeneous of degree −1,

1 = ρ(y)

= −y · ∇ρ(y)

= −λ(y)y · ν(y).

Therefore,

λ(y) = − 1

y · ν(y)
,

and

∇ρ(y) = − ν(y)

y · ν(y)
.

Substituting in y = φ(u) and observing that ∇ρ is homogeneous of degree −2 yields the
desired formula. �

The formula for surface area measure of ∂K in polar coordinates is given in the following:

Lemma 2. If K ⊂ Rn is a convex body containing the origin in its interior, then

dy =
ρK(u)n

φ(u) · ν(φ(u))
du.

The parameterization φ : Sn−1 → ∂K is Lipschitz and therefore differentiable almost
everywhere. By Theorem 3.2.3 in [8], the change of measure is given by the determinant of
the Jacobian. A straightforward computation yields the formula above.



6 ERWIN LUTWAK, DEANE YANG, AND GAOYONG ZHANG

Proposition 3. Given a convex body K ⊂ Rn and x ∈ Rn\{0},

(5) ρΓ−2K(x)−2 =
1

V (K)

∫
Sn−1

(x · ∇ρK(u))2ρK(u)n−4 du,

where ∇ρK is the gradient of ρK in Rn.

Proof. By Lemmas 1 and 2,

ρΓ−2K(x)−2 =
1

V (K)

∫
∂K

(x · ν(y))2

y · ν(y)
dy

=
1

V (K)

∫
Sn−1

(x · ν(φ(u)))2

(φ(u) · ν(φ(u)))2
ρK(u)n du

=
1

V (K)

∫
Sn−1

(x · ∇ρK(u))2ρK(u)n−4 du.

�

The operator Γ−2 can be extended immediately to the class of star bodies with Lipschitz
radial function using either formula (4) or (5). To extend it to the entire class of star bodies
requires a little more work. The next three sections contain preliminary definitions and
results that are needed to this end.

3. A projection of the sphere onto the cylinder

The projection of a vector x ∈ Rn into each tangent space of Sn−1 defines a vector field,

(6) x̂(u) = x− (x · u)u.

We want to use the integral curves of x̂ to define coordinates on Sn−1. This can be done as
follows.

Given x ∈ Rn\{0}, let x⊥ = {v ∈ Rn : v · x = 0} and let

〈x〉 =
x

|x|
.

There is a natural projection of Sn−1 onto the cylinder Rx+(Sn−1∩x⊥) obtained by mapping
the unit vector u to the intersection of the cylinder with the ray containing u. The inverse
of this projection is given by

Mx : R× (Sn−1 ∩ x⊥)→ Sn−1\{〈−x〉, 〈x〉}

(t, φ) 7→ u =
φ+ 〈x〉 sinh |x|t

cosh |x|t
.

A straightforward calculation shows that

x · u = |x| tanh |x|t(7)

and

∂u

∂t
=
x− φ|x| sinh |x|t

(cosh |x|t)2

= x− (x · u)u.
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This implies that for each f ∈ C1(Sn−1),

(8) ∇x̂(Mx(t,φ))f(Mx(t, φ)) =
∂(f ◦Mx)

∂t
(t, φ),

where ∇vf denotes the directional derivative of f in the direction v. Also,

(9) du =
|x| dt dφ

(cosh |x|t)n−1
,

where dφ is the density corresponding to the (n − 2)–dimensional Hausdorff measure on
Sn−1 ∩ x⊥.

4. Differentiability along a vector field

In this section we make precise the notions of continuous differentiability and L2 differ-
entiability along the vector field x̂ of a function on the unit sphere, without assuming any
regularity in other directions.

Given x ∈ Rn, let C0(Sn−1 ∩ x⊥, C1(R)) denote the space of continuous functions

f : R× (Sn−1 ∩ x⊥)→ R

such that f(·, φ) ∈ C1(R), for each φ ∈ Sn−1 ∩ x⊥. Define

C1
x(Sn−1) = {f ∈ C0(Sn−1) : f ◦Mx ∈ C0(Sn−1 ∩ x⊥, C1(R))}.

The restriction of any f ∈ C1
x(Sn−1) to an integral curve of the vector field x̂ is C1. Therefore,

∇x̂f is well defined and given explicitly by

(10) ∇x̂f(Mx(t, φ)) =
∂

∂t
[f(Mx(t, φ))].

The following chain rule holds:

Lemma 4. Given a C1 function φ and f ∈ C1
x(Sn−1), the function φ◦f ∈ C1

x(Sn−1). More-
over,

∇x̂(φ◦f) = (φ′◦f)∇x̂f.

To define the notion of L2 differentiability, we need the following integration by parts
formulas:

Lemma 5. Given x ∈ Rn and f, g ∈ C1
x(Sn−1),∫

Sn−1

f∇x̂g du =

∫
Sn−1

g[−∇x̂f + (n− 1)(x · u)f ] du,(11)

and ∫
Sn−1

f∇x̂g du = −
∫
R×(Sn−1∩x⊥)

(g◦Mx)
∂

∂t

[
|x|(f ◦Mx)

(cosh |x|t)n−1

]
dt dφ.(12)

Proof. By (9) and (10),∫
Sn−1

f∇x̂g du =

∫
R×(Sn−1∩x⊥)

(f ◦Mx)
∂(g◦Mx)

∂t

|x| dt dφ
(cosh |x|t)n−1

.
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Equation (12) now follows by integrating by parts. By (9), (8), and (7),∫
Sn−1

f∇x̂g du = −
∫
R×(Sn−1∩x⊥)

(g◦Mx)
∂

∂t

[
|x|(f ◦Mx)

(cosh |x|t)n−1

]
dt dφ

= −
∫
R×(Sn−1∩x⊥)

(g◦Mx)

[
∂(f ◦Mx)

∂t
− (n− 1)|x| tanh |x|t

]
|x| dt dφ

(cosh |x|t)n−1

=

∫
Sn−1

g[−∇x̂f + (n− 1)(x · u)f ] du.

�

Equation (11) can be used to define for any g ∈ C0(Sn−1) the directional derivative ∇x̂g
as a distribution. This motivates the following:

Definition. Given x ∈ Rn and g ∈ C0(Sn−1), we say that ∇x̂g ∈ L2(Sn−1) if there exists a
function g′ ∈ L2(Sn−1) such that for any f ∈ C1

x(Sn−1),

(13)

∫
Sn−1

g[−∇x̂f + (n− 1)(x · u)f ] du =

∫
Sn−1

g′f du.

If such a function g′ ∈ L2(Sn−1) exists, it will be denoted ∇x̂g.

Since L2(Sn−1) is its own dual, we have

Lemma 6. If x ∈ Rn and g ∈ C0(Sn−1), then ∇x̂g ∈ L2(Sn−1) if and only if there exists
c > 0 such that

(14)

∫
Sn−1

g[−∇x̂f + (n− 1)(x · u)f ] du ≤ c‖f‖2,

for each f ∈ C1
x(Sn−1).

Lemma 5 now gives

Lemma 7. If g ∈ C1
x(Sn−1), the pointwise definition (10) of ∇x̂g agrees with the distribu-

tional definition (13).

5. Smoothing a function along a vector field

Fix x ∈ Rn\{0}. We want to define a smoothing operator that smooths only along the
integral curves of the vector field x̂.

Given τ > 0, let χτ be a smooth nonnegative function on R that is supported in the
interval (−τ, τ) and satisfies ∫ ∞

−∞
χτ (t) dt = 1.

Using the map Mx defined in §3 we define for each g ∈ L2(Sn−1) and τ > 0, the function
gτ ∈ C0(Sn−1) by

gτ (Mx(t, φ)) =

∫ ∞
−∞

g(Mx(t− s, φ))χτ (s) ds.(15)

Observe that

gτ (Mx(t, φ)) =

∫ ∞
−∞

g(Mx(s, φ))χτ (t− s) ds,(16)
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and gτ extends continuously across 〈x〉 and 〈−x〉 ∈ Sn−1.
Before stating and proving the main proposition about gτ , we begin with two lemmas.

The first is an analogue of the standard (and trivial) fact that convolution on Rn commutes
with partial differentiation.

Lemma 8. Given g ∈ C0(Sn−1) and x ∈ Rn, if ∇x̂g ∈ L2(Sn−1), then

(17) ∇x̂gτ = (∇x̂g)τ .

Proof. It suffices to prove that

∂(gτ ◦Mx)

∂t
= (∇x̂g)τ ◦Mx.

By (16) and (10), given any f ∈ C0(Sn−1 ∩ x⊥),∫
Sn−1∩x⊥

f(φ)
∂(gτ ◦Mx)

∂t
(t, φ) dφ =

∫
R×(Sn−1∩x⊥)

f(φ)g(Mx(s, φ))χ′τ (t− s) ds dφ

= −
∫
R×(Sn−1∩x⊥)

g(Mx(s, φ))
∂

∂s
[χτ (t− s)f(φ)] ds dφ

=

∫
R×(Sn−1∩x⊥)

f(φ)χτ (t− s)(∇x̂(u)g)(Mx(s, φ)) ds dφ

=

∫
Sn−1∩x⊥

f(φ)(∇x̂(u)g)τ (Mx(t, φ)) dφ.

This holds for each f ∈ C0(Sn−1 ∩ x⊥) and thus yields (17). �

The next lemma is a weak form of Young’s inequality.

Lemma 9. There exists T > 0 such that for each h ∈ L2(Sn−1) and 0 < τ < T ,

‖hτ‖2 < 2‖h‖2.

Proof. Observe that
cosh |x|(t− s)

cosh |x|t
≤ e|sx|

for every t ∈ R. Therefore, if

0 < τ <
log 4

(n− 1)|x|
,

it follows by Minkowski’s inequality (see, for example, Theorem 2.4 in [21]) that

‖hτ‖2 =

[∫
R×(Sn−1∩x⊥)

(∫ ∞
−∞

h(Mx(t− s, φ))χτ (s) ds

)2 |x| dt dφ
(cosh |x|t)n−1

]1/2

≤
∫ ∞
−∞

χτ (s)

(∫
R×(Sn−1∩x⊥)

h(Mx(t− s, φ))2 |x| dt dφ
(cosh |x|t)n−1

)1/2

ds

=

∫ ∞
−∞

χτ (s)

(∫
R×(Sn−1∩x⊥)

h(Mx(t− s, φ))2

(
cosh |x|(t− s)

cosh |x|t

)n−1 |x| dt dφ
(cosh |x|(t− s))n−1

)1/2

ds

≤ 2‖h‖2.

�
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The main result of this section is the following:

Proposition 10. Given x ∈ Rn\{0} and g ∈ C0(Sn−1) such that ∇x̂g ∈ L2(Sn−1), there
exists a 1–parameter family of functions gτ ∈ C1

x(Sn−1), for τ > 0, such that the following
hold:

lim
τ→0

sup
u∈Sn−1

|gτ (u)− g(u)| = 0,(18)

and

lim
τ→0
‖∇x̂gτ −∇x̂g‖2 = 0.(19)

Proof. Since g is uniformly continuous on Sn−1, there exist for each ε > 0, quantities δ > 0
and T > 0 such that

|g(Mx(t1, φ))− g(Mx(t2, φ))| < ε;

|g(Mx(t, φ))− g(〈x〉)| < ε

2
;

|g(Mx(−t, φ))− g(〈−x〉)| < ε

2
;

for every φ ∈ Sn−1∩x⊥, t ∈ (T −δ,∞), and t1, t2 ∈ [−T, T ] satisfying |t1− t2| < δ. It follows
that given any τ ∈ (0, δ/2),

|gτ (Mx(t, φ))− g(Mx(t, φ))| ≤
∫ ∞
−∞
|g(Mx(s, φ))− g(Mx(t, φ))|χτ (t− s) ds

< ε,

for every (t, φ) ∈ R× (Sn−1 ∩ x⊥). This proves (18).
Given ε > 0, there exists a function f ∈ C0(Sn−1) such that ‖f − ∇x̂g‖2 < ε. By (18),

fτ converges uniformly to f . Therefore, there exists T > 0 such that ‖fτ − f‖2 < ε, for any
τ ∈ (0, T ). By Lemmas 8 and 9, for any τ ∈ (0, T ),

‖∇x̂gτ −∇x̂g‖2 ≤ ‖∇x̂gτ − fτ‖2 + ‖fτ − f‖2 + ‖f −∇x̂g‖2

= ‖(∇x̂g − f)τ‖2 + ‖fτ − f‖2 + ‖f −∇x̂g‖2

≤ 2‖∇x̂g − f‖2 + ‖fτ − f‖2 + ‖f −∇x̂g‖2

≤ 4ε.

This proves (19). �

We can now prove the following analogue of Lemma 4:

Lemma 11. Suppose x ∈ Rn, φ is a C1 function, and g ∈ C0(Sn−1). If ∇x̂g ∈ L2(Sn−1),
then ∇x̂(φ◦g) ∈ L2(Sn−1) and

∇x̂(φ◦g) = (φ′◦g)∇x̂g.
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Proof. By (18), as τ → 0, φ′◦gτ converges uniformly to φ′◦g and φ◦gτ to φ◦g. Therefore,
(φ′◦gτ )∇x̂gτ converges in L2 to (φ′◦g)∇x̂g, and, given any f ∈ C1

x(Sn−1),∫
Sn−1

(φ◦g)[−∇x̂f + (n− 1)(x · u)f ] du = lim
τ→0

∫
Sn−1

(φ◦gτ )[−∇x̂f + (n− 1)(x · u)f ] du

= lim
τ→0

∫
Sn−1

[(φ′◦gτ )∇x̂gτ ]f du

=

∫
Sn−1

[(φ′◦g)∇x̂g]f du.

The lemma now follows by (13). �

6. The Γ−2–ellipsoid for star bodies

Given a star body K ⊂ Rn, define gK : Rn\{0} → R to be

(20) gK(x) =


ρK(x)

n
2
−1

n
2
− 1

, if n > 2;

log ρK(x), if n = 2.

If ρK : Rn\{0} → R is C1, then formula (5) can be rewritten as

ρΓ−2K(x)−2 =
1

V (K)

∫
Sn−1

(∇xgK(u))2 du,(21)

where ∇xgK denotes the directional derivative of gK (viewed as a function on Rn\{0}) in
the direction u. In general, gK is known only to be C0, and its directional derivative does
not necessarily exist. Nevertheless, it is still possible to define Γ−2K.

Obviously, given p ∈ R, any function g ∈ C1(Sn−1) has a unique extension to Rn\{0} that
is homogeneous of degree p. Euler’s equation says that for each y ∈ Rn\{0},

∇yg(y) = pg(y).

Therefore, given x ∈ Rn,

(22) ∇xg(u) = ∇x̂(u)g(u) + p(x · u)g(u),

for any u ∈ Sn−1. If we assume only that g ∈ C0(Sn−1) and ∇x̂g ∈ L2(Sn−1), then the
function ∇xg ∈ L2(Sn−1) can be defined using (22).

In particular, if gK ∈ C1(Sn−1), then the homogeneity of ρK and Euler’s equation imply
that, for any u ∈ Sn−1,

(23) ∇xgK(u) = ∇x̂gK(u)− (x · u)ρK(u)
n
2
−1.

If we assume only that ∇x̂gK ∈ L2(Sn−1), then equation (23) can be used to define ∇xgK ∈
L2(Sn−1). Lemma 11 ensures that (23) is consistent with the definition of ∇xρK , as given
by (22).

We can now define the set Γ−2K.

Definition. Given a star body K ⊂ Rn, define

(24) Γ−2K = {x ∈ Rn : ∇xgK ∈ L2(Sn−1) and ‖∇xgK‖2
2 ≤ V (K)}.
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If the body K is convex, then this definition agrees with formula (5) and therefore with
the original definition given in [26].

The following integration by parts formulas will be needed later:

Lemma 12. Suppose K ⊂ Rn is a star body, and x ∈ Rn such that ∇x̂gK ∈ L2(Sn−1). Then
for every f ∈ C1

x(Sn−1),

(25)

∫
Sn−1

f∇xgK du =


−
∫
Sn−1

gK∇xf du, if n > 2

−
∫
Sn−1

(∇xf)(gK − log |f |) du, if n = 2,

where f has been extended to be homogeneous of degree −n
2

on Rn\{0}.

Proof. First, assume that gK ∈ C1
x(Sn−1). The case n > 2 follows directly from equation

(22), Lemma 4, and Lemma 5.
The case n = 2 requires the additional observations that f∇x(log |f |) ∈ L∞(Sn−1), and

that
f(u)∇x(log |f(u)|) = ∇xf(u),

for almost every u ∈ Sn−1.
If ∇x̂gK ∈ L2(Sn−1), then equation (25) holds for (gK)τ , as defined by Lemma 10. The

lemma now follows by taking the limit τ → 0. �

7. Invariance under GL(n)

Lemma 13. If K ⊂ Rn is a star body and φ ∈ GL(n),

Γ−2φK = φΓ−2K.

Proof. Given a star body K ⊂ Rn, let gK be as defined by (20). Given a star body L ⊂ Rn,
let

fL = ρ
n
2
L .

Recall that 〈x〉 = x/|x|, for any x ∈ Rn. Let φ ∈ SL(n) and

v = 〈φ−1u〉.
Using the fact that

ρφK(u) = ρK(φ−1u),

and (25), we have for n > 2,∫
Sn−1

fL∇xgφK du = −
∫
Sn−1

gφK(u)∇xfL(u) du

= −
∫
Sn−1

gK(φ−1u)∇xfL(u) du

= −
∫
Sn−1

|φ−1u|1−
n
2 gK

(
〈φ−1u〉

)
∇xfL (〈φv〉) du

= −
∫
Sn−1

gK(v)∇xfL(φv)|φ−1u|−n du

= −
∫
Sn−1

gK(v)∇φ−1xfφ−1L(v) dv.
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If n = 2, then ∫
Sn−1

fL∇xgφK du =

∫
Sn−1

ρL∇x

(
log

ρφK
ρL

)
du

=

∫
Sn−1

−∇xρL(u) log
ρφK(u)

ρL(u)
du

=

∫
Sn−1

−∇xρL (〈φv〉) log
ρK(φ−1u)

ρφ−1L(φ−1u)
du

=

∫
Sn−1

−∇xρL(φv) log
ρK(v)

ρφ−1L(v)
|φ−1u|−2 du

=

∫
Sn−1

−∇φ−1xρφ−1L(v) log
ρK(v)

ρφ−1L(v)
dv

=

∫
Sn−1

ρφ−1L(v)∇φ−1x

(
log

ρK(v)

ρφ−1L(v)

)
dv

=

∫
Sn−1

fφ−1L∇φ−1xgK dv.

Thus, for each dimension n ≥ 2 and star body L with a C1 radial function,∫
Sn−1

∇xgφKfL du =

∫
Sn−1

∇φ−1xgKfφ−1L du.

It follows by linearity that for any f ∈ C1(Sn−1),∫
Sn−1

∇xgφKf du =

∫
Sn−1

∇φ−1xgKf ◦φ du.

Therefore,

∇xgφK ∈ L2(Sn−1) if and only if ∇φ−1xgK ∈ L2(Sn−1).

Given any f ∈ C1(Sn−1), extend it to Rn\{0} as a function homogeneous of degree −n
2
.

There exists a star–shaped set L such that

ρ
n
2
L = |f |.

Observe that for any φ ∈ SL(n),

ρ
n
2

φ−1L = |f ◦φ|,

and therefore

‖f ◦φ‖2
2 = nV (φ−1L)

= nV (L)

= ‖f‖2
2.
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It follows that

‖∇xgφK‖2 = sup

{∫
Sn−1

∇xgφKf du : ‖f‖2 = 1

}
= sup

{∫
Sn−1

∇φ−1xgKf ◦φ du : ‖f ◦φ‖2 = 1

}
= ‖∇φ−1xgK‖2,

and

Γ−2φK = {x ∈ Rn : ∇xgφK ∈ L2(Sn−1) and ‖∇xgφK‖2
2 ≤ V (φK)}

= {x ∈ Rn : ∇φ−1xgK ∈ L2(Sn−1) and ‖∇φ−1xgK‖2
2 ≤ V (K)}

= {φw ∈ Rn : ∇wgK ∈ L2(Sn−1) and ‖∇wgK‖2
2 ≤ V (K)}

= φΓ−2K.

For the case of dilation, let λ > 0. It is easily seen that

∇xgλK = ∇
λ
n
2−1x

gK = λ
n
2∇λ−1xgK .

Therefore,

Γ−2λK = {x ∈ Rn : ∇xgλK ∈ L2(Sn−1) and ‖∇xgλK‖2
2 ≤ V (λK)}

= {x ∈ Rn : ∇λ−1xgK ∈ L2(Sn−1) and ‖∇λ−1xgK‖2
2 ≤ V (K)}

= {λw ∈ Rn : ∇wgK ∈ L2(Sn−1) and ‖∇wgK‖2
2 ≤ V (K)}

= λΓ−2K.

�

8. A formula for volume

The following formula for the volume of a star body K is needed to prove that the Legendre
ellipsoid contains the Γ−2–ellipsoid:

Lemma 14. Given x ∈ Sn−1 and a star body K ⊂ Rn, if ∇x̂gK ∈ L2(Sn−1), then

V (K) =

∫
Sn−1

(x · u)ρK(u)
n
2

+1(−∇xgK(u)) du.

Proof. For convenience we shall omit the subscript K, denoting ρK by ρ and gK by g.
By (23), Lemma 11, and (22), the following holds in L2(Sn−1):

ρ
n
2

+1∇xg = ρ
n
2

+1[∇x̂g − (x · u)ρ
n
2
−1]

= ρn−1∇x̂ρ− (x · u)ρn

=
1

n
∇x̂(ρ

n)− (x · u)ρn.
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Since ∇x̂(ρ
n) ∈ L2(Sn−1), it follows by (13) that∫
Sn−1

(x · u)ρ
n
2

+1(−∇xg) du =

∫
Sn−1

(x · u)

[
− 1

n
∇x̂(ρ

n) + (x · u)ρn
]
du

=

∫
Sn−1

1

n
[∇x̂(x · u) + (x · u)2]ρn du

=
1

n

∫
Sn−1

ρn du

= V (K).

�

9. Inclusion and equality

Theorem. If K ⊂ Rn is a star body, then

Γ−2K ⊂ Γ2K,

with equality holding if and only if K is an ellipsoid centered at the origin.

Proof. By applying a linear transformation to K, we can assume that its Legendre ellipsoid
Γ2K is the unit ball. This means that

(26)
1

V (K)

∫
Sn−1

(x · u)2ρK(u)n+2 du = |x|2

for every x ∈ Rn.
Let x ∈ Γ−2K. First, it follows from the definition of Γ−2K that ∇x̂gK ∈ L2(Sn−1). By

Lemma 14, the Hölder inequality, (26), and (24),

|x|2 =
1

V (K)

∫
Sn−1

(x · u)ρ(u)
n
2

+1(−∇xgK(u)) du

≤
(

1

V (K)

∫
Sn−1

(x · u)2ρK(u)n+2 du

)1/2(
1

V (K)

∫
Sn−1

(∇xgK(u))2 du

)1/2

≤ |x|.

(27)

Thus, |x| ≤ 1, and therefore, Γ−2K is contained in the unit ball. This proves that

Γ−2K ⊂ Γ2K.

Suppose Γ−2K = Γ2K. Since we are assuming that Γ2K is the unit ball, so is Γ−2K. This
implies that for each x ∈ Sn−1, we have ∇xgK ∈ L2(Sn−1), and equality holds in all of the
inequalities in (27). From the equality conditions of the Hölder inequality, there exists for
each x ∈ Sn−1 a constant c(x) such that

(28) (x · u)ρK(u)
n
2

+1 = c(x)∇xgK(u),

for almost every u ∈ Sn−1. Integrating the square of both sides with respect to u ∈ Sn−1

and using (24) and (26) shows that c(x) = ±1. Since (28) holds for all x ∈ Sn−1, it follows
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by (13) that for each f ∈ C1(Rn\{0}) homogeneous of degree −n
2
− 1, if n > 2,∫

Sn−1

ρ
n
2

+1

K f du =
n∑
i=1

∫
Sn−1

(u · ei)(ei · u)ρK(u)
n
2

+1f(u) du

= ±
n∑
i=1

∫
Sn−1

(u · ei)f(u)∇eigK(u) du

= ∓
n∑
i=1

∫
Sn−1

∇ei((u · ei)f)gK du

= ∓
n∑
i=1

∫
Sn−1

[(u · ei)∇eif + f ]gK du

= ∓
∫
Sn−1

(∇uf + nf)gK du

= ∓
∫
Sn−1

fρ
n
2
−1 du.

If n = 2, then for each f ∈ C1(Rn\{0}) homogeneous of degree −n
2
− 1,∫

Sn−1

ρ
n
2

+1

K f du =
n∑
i=1

∫
Sn−1

(u · ei)(ei · u)ρK(u)
n
2

+1f(u) du

= ±
n∑
i=1

∫
Sn−1

(u · ei)f(u)∇eigK(u) du

= ±
n∑
i=1

∫
Sn−1

[(u · ei)f∇ei(gK − log |f |1/2) +
1

2
(u · ei)∇eif ] du

= ∓
n∑
i=1

∫
Sn−1

[(g − log |f |1/2)∇ei [(u · ei)f ] +
1

2
f∇ei(u · ei)] du

= ∓
∫
Sn−1

f du.

Therefore
ρ
n
2

+1 = ±ρ
n
2
−1,

in each dimension n ≥ 2. Since ρK is positive and continuous, it must be the constant
function 1. In other words, K is the unit ball centered at the origin. �

10. The set Γ−2K is an ellipsoid

Corollary. If K ⊂ Rn is a star body, then the set Γ−2K ⊂ Rn is an ellipsoid that is possibly
degenerate.

Proof. Suppose K is a star body and gK is as defined by (20). Using (13), it is easily seen that
for all x, v ∈ Rn and λ ∈ R, if ∇xgK ,∇vgK ∈ L2(Sn−1), then ∇λxgK ,∇x+vgK ∈ L2(Sn−1). It
follows that the set

L = {x ∈ Rn : ∇xgK ∈ L2(Sn−1)}
is a linear subspace of Rn. Moreover, Γ−2K ⊂ L.
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Let dimL = m ≤ n. Choose a basis e1, . . . , en of Rn such that e1, . . . , em is a basis of L.
Given x ∈ L, write

x =
m∑
i=1

xiei.

Then x ∈ Γ−2K if and only if x ·Ax ≤ V (K), where A is the nonnegative symmetric matrix
whose (i, j)–th entry is

Aij =

∫
Sn−1

(∇eigK)(∇ejgK) du,

where 1 ≤ i, j ≤ m. Observe that since ei, ej ∈ L, it follows from the Hölder inequality that
the integral is bounded.

Now suppose A has a zero eigenvalue. Then the set Γ−2K is unbounded. However, the
Legendre ellipsoid Γ2K is bounded and, by the theorem, Γ−2K ⊂ Γ2K. Therefore, Γ−2K is
bounded. The contradiction shows that A is positive definite, and Γ−2K is a nondegenerate
ellipsoid in L. �
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for log concave functions, and with an application to the diffusion equation, J. Functional Analysis 22
(1976), no. 4, 366–389.

[4] M. H. M. Costa and T. M. Cover, On the similarity of the entropy power inequality and the Brunn–
Minkowski inequality, IEEE Trans. Inform. Theory 30 (1984), 837–839.

[5] T. M. Cover and J. A. Thomas, Elements of information theory, Wily–Interscience, 1991.
[6] A. Dembo, T. M. Cover, and J. A. Thomas, Information-theoretic inequalities, IEEE Trans. Inform.

Theory 37 (1991), no. 6, 1501–1518.
[7] J. L. Doob, Probability and statistics, Transactions of the AMS 36 (1934), 759–775.
[8] H. Federer, Geometric measure theory, Springer-Verlag New York Inc., New York, 1969, Die Grundlehren

der mathematischen Wissenschaften, Band 153.
[9] Wm. J. Firey, p–means of convex bodies, Math. Scand. 10 (1962), 17–24.
[10] R. A. Fisher, Theory of statistical estimation, Philos. Trans. Roy. Soc. London Ser A 222 (1930),

309–368.
[11] R. J. Gardner, On the Busemann-Petty problem concerning central sections of centrally symmetric

convex bodies, Bull. Amer. Math. Soc. (N.S.) 30 (1994), no. 2, 222–226.
[12] , A positive answer to the Busemann-Petty problem in three dimensions, Ann. of Math. (2) 140

(1994), no. 2, 435–447.
[13] , Geometric tomography, Notices Amer. Math. Soc. 42 (1995), 422–429.
[14] , Geometric Tomography, Cambridge University Press, Cambridge, 1995.
[15] R. J. Gardner, A. Koldobsky, and T. Schlumprecht, An analytic solution to the Busemann-Petty problem

on sections of convex bodies, Ann. of Math. (2) 149 (1999), no. 2, 691–703.
[16] O. Guleryz, E. Lutwak, D. Yang, and G. Zhang, Information theoretic inequalities for contoured distri-

butions, preprint.
[17] Alexander Koldobsky, Intersection bodies and the Busemann-Petty problem, C. R. Acad. Sci. Paris Sér.

I Math. 325 (1997), no. 11, 1181–1186.
[18] , Intersection bodies in R4, Adv. Math. 136 (1998), no. 1, 1–14.
[19] , Intersection bodies, positive definite distributions, and the Busemann-Petty problem, Amer. J.

Math. 120 (1998), no. 4, 827–840.
[20] , Second derivative test for intersection bodies, Adv. Math. 136 (1998), no. 1, 15–25.



18 ERWIN LUTWAK, DEANE YANG, AND GAOYONG ZHANG

[21] E. H. Lieb and M. Loss, Analysis, American Mathematical Society, Providence, RI, 1997.
[22] E. Lutwak, Dual mixed volumes, Pacific J. Math. 58 (1975), no. 2, 531–538.
[23] , Intersection bodies and dual mixed volumes, Advances in Math. 71 (1988), 232–261.
[24] , The Brunn–Minkowski–Firey theory I: mixed volumes and the Minkowski problem, J. Differen-

tial Geom. 38 (1993), 131–150.
[25] , The Brunn–Minkowski–Firey theory II: affine and geominimal surface area, Advances in Math.

118 (1996), 244–294.
[26] E. Lutwak, D. Yang, and G. Zhang, A new ellipsoid associated with convex bodies, Duke Mathematical

Journal, 104 (2000), 375-390.
[27] V. D. Milman and A. Pajor, Isotropic position and inertia ellipsoids and zonoids of the unit ball of

a normed n-dimensional space, Geometric Aspects of Functional Analysis (1987–88), Springer, Berlin,
1989, pp. 64–104.

[28] R. Schneider, Convex bodies: the Brunn-Minkowski theory, Cambridge University Press, Cambridge,
1993.

[29] G. Zhang, Centered bodies and dual mixed volumes, Trans. Amer. Math. Soc. 345 (1994), no. 2, 777–801.
[30] , A positive solution to the Busemann-Petty problem in R4, Ann. of Math. (2) 149 (1999), no. 2,

535–543.

Department of Mathematics, Polytechnic University, Six Metrotech Center, Brooklyn,

NY 11201

E-mail address: elutwak@poly.edu
E-mail address: dyang@poly.edu
E-mail address: gzhang@poly.edu


