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Abstract. It is shown that corresponding to each convex body there is an ellipsoid
that is in a sense dual to the Legendre ellipsoid of classical mechanics. Sharp affine

isoperimetric inequalities are obtained between the volume of the convex body and
that of its corresponding new ellipsoid. These inequalities provide exact bounds

for the isotropic constant associated with the new ellipsoid. Among other things,

this leads to a new approach to establishing Ball’s maximal shadows conjecture (for
symmetric convex bodies).

Corresponding to each origin–symmetric convex (or more general) subset of Eu-
clidean n-space, Rn, there is a unique ellipsoid with the following property: The
moment of inertia of the ellipsoid and the moment of inertia of the convex set is
the same about every 1-dimensional subspace of Rn. This ellipsoid is called the
Legendre ellipsoid of the convex set. The Legendre ellipsoid and its polar (the Bi-
net ellipsoid) are well-known concepts from classical mechanics. See Milman and
Pajor [MPa1, MPa2], Lindenstrauss and Milman [LiM] and Leichtweiß [Le] for some
historical references.

It has slowly come to be recognized that along side the Brunn-Minkowski theory
there is a dual theory. The nature of the duality between this dual Brunn-Minkowski
theory and the Brunn-Minkowski theory is subtle and not yet understood. It is
easily seen that the Legendre (and Binet) ellipsoid is an object of this dual Brunn-
Minkowski theory. This observation leads immediately to the natural question
regarding the possible existence of a dual analog of the classical Legendre ellipsoid
in the Brunn-Minkowski theory. It is the aim of this paper to demonstrate the
existence of precisely this dual object. In retrospect, one may well wonder why
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the new ellipsoid presented in this note was not discovered long ago. The simple
answer is that the definition of the new ellipsoid becomes obvious only with the
notion of L2-curvature in hand. However, the Brunn-Minkowski theory was only
recently extended to incorporate the new notion of Lp-curvature (see [L2], [L3]).

A positive definite n × n real symmetric matrix A generates an ellipsoid, ε(A),
in Rn, defined by

ε(A) = {x ∈ Rn : x·Ax ≤ 1},

where x·Ax denotes the standard inner product of x and Ax in Rn.
Associated with a star-shaped (about the origin) set K ⊂ R

n is its Legedre
ellipsoid, Γ2K, which is generated by the matrix [mij(K)]−1 where

mij(K) =
n+ 2
V (K)

∫
K

(ei ·x)(ej ·x) dx,

with e1, . . . , en denoting the standard basis for Rn and V (K) denoting the n-
dimensional volume of K.

We will associate a new ellipsoid Γ−2K with each convex body K ⊂ Rn. One
approach to defining Γ−2K without introducing new notation is to first define it
for polytopes and then use approximation (with respect to the Hausdorff metric)
to extend the definition to all convex bodies.

Suppose P ⊂ R
n is a polytope that contains the origin in its interior. Let

u1, . . . , uN denote the outer unit normals to the faces of P , let a1, . . . , aN denote
the areas (i.e., (n − 1)-dimensional volumes) of the corresponding faces and let
h1, . . . , hN denote the distances from the origin to the corresponding faces. The
ellipsoid Γ−2P is generated by the matrix [m̃ij(P )] where

m̃ij(P ) =
1

V (P )

N∑
l=1

al
hl

(ei ·ul)(ej ·ul).

An alternate definition of the operator Γ−2 will be given after additional notation
is introduced.

The easily established affine nature of the operator Γ2 is formally stated in:

Lemma 1. If K ⊂ Rn is star shaped about the origin, then for each φ ∈ GL(n),

Γ2(φK) = φΓ2K.

While more difficult to see, we will prove
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Lemma 1∗. Suppose K ⊂ R
n is a convex body that contains the origin in its

interior. Then for each φ ∈ GL(n),

Γ−2(φK) = φΓ−2K.

The following theorem is fundamental and goes back, at least, to Blaschke [Bl],
John [J], and Petty [P1] (see also Milman and Pajor [MPa1,MPa2]). We will give
yet another proof in this paper.

Theorem 1. If K ⊂ Rn is star shaped about the origin, then

V (Γ2K) ≥ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

For our new ellipsoids we will establish:

Theorem 1∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. Then

V (Γ−2K) ≤ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

The operator Γ−2 has the following monotonicity property:

Theorem 2∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. If E is an ellipsoid centered at the origin such that E ⊂ K, then

V (Γ−2E) ≤ V (Γ−2K),

with equality if and only if E = Γ−2K.

Let Sn−1 denote the unit sphere, centered at the origin, in Rn. Let B denote the
unit ball, centered at the origin, in Rn, and let ωn = V (B).

From Theorem 2∗ we will obtain:

Theorem 3∗. Suppose K ⊂ Rn is a convex body that is origin-symmetric, then

V (Γ−2K) ≥ 2−nωnV (K),

with equality if and only if K is a parallelotope.

The analog of Theorem 3∗ for the operator Γ2 is one of the major open problems
in the field: Finding the maximum of V (Γ2K)/V (K) as K ranges even over the class
of origin-symmetric convex bodies (or even important small subclasses) is difficult
(see e.g., the survey of Lindenstrauss and Milman [LiM]). It is even difficult to show
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that there exists a c (independent of the dimension n) such that [V (Γ2K)/V (K)]1/n

is bounded by c
√
n as K ranges over the class of origin-symmetric convex bodies.

This problem was first posed by Bourgain [Bo1]. The best known bounds to date
appear to be those of Bourgain [Bo2] (see also Dar [D] and Junge [Ju]). There
is an important class of questions in the local theory of Banach spaces which are
well known to be equivalent in that an answer to one will immediately provide
an answer to the others. Bourgain’s problem is one member of this important
class of equivalent problems. See Milman and Pajor [MPa2, Section 5]. We shall
present a version of Theorem 3∗ for arbitrary convex bodies. We then present a
classical characterization of the operator Γ2 and its obvious counterpart for the
operator Γ−2. Finally, we shall present an analog of Milman’s important notion
of ‘isotropic position’ and explore some of its consequences. We have chosen to
reprove all the classical results concerning the operator Γ2 for two reasons. First we
want to show the close connection and interrelationship between the operators Γ2

and Γ−2. Second, we believe that new proofs of classical results are almost always
enlightening.

A serious attempt has been made to present all arguments in a reasonably self-
contained manner. For quick reference, some basic properties of L2-mixed and dual
mixed volumes will be listed. Some recent applications of dual mixed volumes can
be found in [G1], [Z1], [Z2] and [Z3]. The L1-analogs of some of the identities
presented may be found in [L1]. For general reference the reader may wish to
consult the books of Gardner [G2], Schneider [S], and Thompson [T].

Recall that if K ⊂ Rn is a convex body that contains the origin in its interior,
then K∗, the polar of K, is defined by

K∗ = {x ∈ Rn : x·y ≤ 1, for all y ∈ K}.

From the definition it follows easily that for each convex body K, we have

K∗∗ = K. (1)

From the definition of a polar body, it follows trivially that for each convex body
K and φ ∈ GL(n)

(φK)∗ = φ−t(K∗), (2)

where φ−t denotes the inverse of the transpose of φ.

The radial function, ρK = ρ(K, · ) : Rn\{0} → [0,∞), of a compact, star–shaped
(about the origin) K ⊂ Rn, is defined, for x 6= 0, by

ρ(K,x) = max{λ ≥ 0 : λx ∈ K }.
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If ρK is positive and continuous, K is called a star body (about the origin). Two star
bodies K and L are said to be dilates (of one another) if ρK(u)/ρL(u) is independent
of u ∈ Sn−1.

From the definition of radial function, it follows immediately that for a star body
K, an x ∈ Rn \ {0}, and a φ ∈ GL(n), we have

ρφK(x) = ρK(φ−1x), (3)

φK = {φx : x ∈ K} is the image of K under φ.
If K ⊂ R

n is a convex body that contains the origin in its interior, then its
support function, hK = h(K, · ) : Rn → (0,∞), is defined for x ∈ Rn by

h(K,x) = max{x·y : y ∈ K}.

Since it is assumed throughout that all of our convex bodies contain the origin in
their interiors, all support functions are strictly positive on Rn\{0}.

From the definition of support function, it follows immediately that for a convex
body K, an x ∈ Rn, and a φ ∈ GL(n), we have

hφK(x) = hK(φtx), (3∗)

where φt denotes the transpose of φ.

If K is a convex body, then it follows from the definitions of support and radial
functions, and the definition of polar body, that

hK∗ = 1/ρK and ρK∗ = 1/hK . (4)

For star bodies K,L, and ε > 0, the L2-harmonic radial combination K +̃−2 ε·L
is the star body defined by

ρ(K +̃−2 ε·L, · )−2 = ρ(K, · )−2 + ερ(L, · )−2. (5)

For convex bodies K,L, and ε > 0 the Firey L2-combination K+2ε ·L is defined as
the convex body whose support function is given by

h(K+2ε·L, · )2 = h(K, · )2 + εh(L, · )2. (5∗)

Note that the “scalar” multiplication “ε·L” in (5) and (5∗) are different. The
temptation to put a subscript under each “·” was resisted.

From (4) we see that the relationship between the two types of combinations is
that for convex bodies K,L, and ε > 0,

K+2ε·L = (K∗ +̃−2 ε·L∗)∗.
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The dual mixed volume V−2(K,L) of the star bodies K,L, can be defined by

n

−2
V−2(K,L) = lim

ε→0+

V (K +̃−2 ε · L)− V (K)
ε

. (6)

The L2–mixed volume, V2(K,L), of the convex bodies K,L was defined in [L2] by:

n

2
V2(K,L) = lim

ε→0+

V (K+2ε·L)− V (K)
ε

. (6∗)

That this limit exists was demonstrated in [L2].
From the definitions (5) and (6), it follows immediately that for each star body

K,
V−2(K,K) = V (K). (7)

From the definitions (5∗) and (6∗), it follows immediately that for each convex body
K,

V2(K,K) = V (K). (7∗)

From (3) and the definition of an L2-harmonic radial combination (5) it follows
immediately that for an L2-harmonic radial combination of star bodies K and L,

φ(K +̃−2 ε · L) = φK +̃−2 ε · φL.

This observation together with the definition of the dual mixed volume V−2 shows
that for φ ∈ SL(n) and star bodies K,L we have V−2(φK, φL) = V−2(K,L) or
equivalently

V−2(φK,L) = V−2(K,φ−1L). (8)

From (3∗) and the definition of a Firey L2-combination (5∗) it follows immedi-
ately that for a Firey combination of convex bodies K and L,

φ(K+2ε·L) = φK+2ε·φL.

This observation together with the definition of the L2-mixed volume V2 shows
that for φ ∈ SL(n) and convex bodies K,L we have V2(φK, φL) = V2(K,L) or
equivalently

V2(φK,L) = V2(K,φ−1L). (8∗)

The definitions (5) and (6), and the polar coordinate formula for volume give the
following integral representation of the dual mixed volume V−2(K,L) of the star
bodies K,L:

V−2(K,L) =
1
n

∫
Sn−1

ρn+2
K (v)ρ−2

L (v) dS(v), (9)
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where the integration is with respect to spherical Lebesgue measure S on Sn−1. It
was shown in [L2], that corresponding to each convex body K, there is a positive
Borel measure S2(K, · ) on Sn−1 such that

V2(K,L) =
1
n

∫
Sn−1

h2
L(u) dS2(K,u), (9∗)

for each convex body L.

We will require two basic inequalities regarding the mixed volumes V2 and the
dual mixed volumes V−2. The dual mixed volume inequality for V−2 is that for star
bodies K,L,

V−2(K,L) ≥ V (K)(n+2)/nV (L)−2/n, (10)

with equality if and only if K and L are dilates. This inequality is an immediate
consequence of the Hölder inequality and the integral representation (9). The L2-
analog of the classical Minkowski inequality states that for convex bodies K,L,

V2(K,L) ≥ V (K)(n−2)/nV (L)2/n, (10∗)

with equality if and only if K and L are dilates. This L2-analog of the Minkowski
inequality was established in [L2] by using the classical Minkowski mixed volume
inequality. An immediate consequence of the dual mixed volume inequality (10),
and identity (7), that we shall use is the fact that if for star bodies K,L we have

V−2(Q,K)/V (Q) = V−2(Q,L)/V (Q),

for all star bodies Q, which belong to some class that contains both K and L, then
in fact K = L.

It is easy to verify that if A is a positive definite n × n real symmetric matrix
then the radial and support functions of the ellipsoid ε(A) = {x ∈ Rn : x·Ax ≤ 1},
are given by

ρ−2
ε(A)(u) = u ·Au and h2

ε(A)(u) = u ·A−1u,

for u ∈ Sn−1. Thus, for a star body K,

h2
Γ2K(u) =

n+ 2
V (K)

∫
K

(u·x)2dx, (11)

for u ∈ Sn−1. The normalization above is chosen so that for the unit ball B, we
have Γ2B = B. It must be emphasized that our normalization differs from the
classical. For the polar of Γ2K we will write Γ∗2K rather than (Γ2K)∗.
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For each convex body K, we can define the ellipsoid Γ−2K by

ρ−2
Γ−2K

(u) =
1

V (K)

∫
Sn−1

(u·v)2dS2(K, v), (11∗)

for u ∈ Sn−1. Note that for the unit ball B, we have Γ−2B = B. For the polar of
Γ−2K we will write Γ∗−2K rather than (Γ−2K)∗, and thus

h2
Γ∗−2K

(u) =
1

V (K)

∫
Sn−1

(u·v)2dS2(K, v).

It was shown in [L2] that the L2-surface area measure S2(K, · ) is absolutely
continuous with respect to the classical surface area measure SK and that the
Radon-Nikodym derivative

dS2(K, · )
dSK

= 1/hK .

Thus, if P is a polytope whose faces have outer unit normals u1, . . . , uN , and ai
denotes the area of the face with outer normal ui and hi denotes the distance from
the origin to this face, then the measure S2(P, · ) is concentrated at the points
u1, . . . , uN ∈ Sn−1 and S2(P, {ui}) = ai/hi. Thus, for the polytope P , we have

ρ−2
Γ−2P

(u) =
1

V (P )

N∑
l=1

(u·ul)2 al
hl

for u ∈ Sn−1.
If K is a convex body such that ∂K is C2 and whose Gauss curvature is bounded,

then it is well known that the measure SK is absolutely continuous with respect to
spherical Lebesgue measure (i.e., (n − 1)-dimensional Hausdorff measure), S, and
the Radon-Nikodym derivative

dSK
dS

= fK

where fK : Sn−1 → (0,∞) is the reciprocal Gauss curvature of ∂K viewed as a
function of the outer normals (i.e., fK(u), for u ∈ Sn−1, is the reciprocal Gauss
curvature at the point of ∂K whose outer unit normal is u). Thus for u ∈ Sn−1,

ρ−2
Γ−2K

(u) =
1

V (K)

∫
Sn−1

(u·v)2h−1
K (v)fK(v) dS(v),

or equivalently,

ρ−2
Γ−2K

(u) =
1

V (K)

∫
∂K

(u·ν(x))2h−1
K (ν(x)) dx,

where ν(x) denotes the outer unit normal at x ∈ ∂K and the integration is with
respect to the intrinsic measure on ∂K.
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A connection between the operators Γ2 and Γ−2 is given in the following identity:

Lemma 2. Suppose K,L ⊂ Rn. If K is a convex body that contains the origin in
its interior and L is a star body about the origin, then

V2(L,Γ2K)/V (L) = V−2(K,Γ−2L)/V (K).

Proof. From the integral representation (9∗), definition (11), Fubini’s theorem, def-
inition (11∗), and the integral representation (9), it follows that

V2(L,Γ2K) =
1
n

∫
Sn−1

h2
Γ2K(u) dS2(L, u)

=
1
n

∫
Sn−1

(
n+ 2
V (K)

∫
K

(u · x)2dx

)
dS2(L, u)

=
1

nV (K)

∫
Sn−1

∫
Sn−1

(u · v)2ρn+2
K (v) dS(v) dS2(L, u)

=
V (L)
nV (K)

∫
Sn−1

ρn+2
K (v)ρ−2

Γ−2L
(v) dS(v)

=
V (L)
V (K)

V−2(K,Γ−2L).

From the integral representation (9), definition (11), (4), and Fubini’s theorem,
we immediately see that if K and L are star bodies, then

V−2(K,Γ∗2L)/V (K) = V−2(L,Γ∗2K)/V (L) (12)

From the integral representation (9∗), definition (11∗), (4), and Fubini’s theorem,
we immediately see that if K and L are convex bodies, then

V2(K,Γ∗−2L)/V (K) = V2(L,Γ∗−2K)/V (L) (12∗)

An immediate consequence of the definition of the L2-centroid body (11) and the
transformation rule for support function (3∗), is that for φ ∈ GL(n),

Γ2φK = φΓ2K.

Since, for the unit ball, B, we have Γ2B = B, it follows that if E is an ellipsoid
centered at the origin, then

Γ2E = E.

The following lemma shows that Γ−2 is also an intertwining operator with the
linear group GL(n).
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Lemma 1∗. Suppose K ⊂ R
n is a convex body that contains the origin in its

interior. If φ ∈ GL(n), then

Γ−2(φK) = φΓ−2K.

Proof. From Lemma 2, followed by (8∗), Lemma 1, Lemma 2 again, and (8) we
have for each star body Q,

V−2(Q,Γ−2φK)/V (Q) = V2(φK,Γ2Q)/V (φK)

= V2(K,φ−1Γ2Q)/V (K)

= V2(K,Γ2φ
−1Q)/V (K)

= V−2(φ−1Q,Γ−2K)/V (φ−1Q)

= V−2(Q,φΓ−2K)/V (Q).

But V−2(Q,Γ−2φK)/V (Q) = V−2(Q,φΓ−2K)/V (Q) for all star bodies Q implies
that

Γ−2φK = φΓ−2K.

Since, for the unit ball, B, we have Γ−2B = B, it follows from Lemma 1∗ that if
E is an ellipsoid centered at the origin, then

Γ−2E = E.

Thus Γ−2Γ2K = Γ2K, for all K. Now, in Lemma 2 take L = Γ2K, use (7∗), and
get: For each star body K,

V−2(K,Γ2K) = V (K). (13)

But (13) and the dual mixed volume inequality (10) immediately yield:

Theorem 1. If K ⊂ Rn is a star body about the origin, then

V (Γ2K) ≥ V (K),

with equality if and only if K is an ellipsoid centered at the origin.

In Lemma 2 take K = Γ−2L, use (7), and get: For each convex body L,

V2(L,Γ−2L) = V (L). (13∗)

But (13∗) and the L2-mixed volume inequality (10∗) immediately yield:

Theorem 1∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. Then

V (Γ−2K) ≤ V (K),

with equality if and only if K is an ellipsoid centered at the origin.
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Theorem 2∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. If E is an ellipsoid centered at the origin such that E ⊂ K, then

V (Γ−2E) ≤ V (Γ−2K),

with equality if and only if E = Γ−2K.

Proof. From the integral representation (9∗) we see that the mixed volume V2(K, · )
is monotone with respect to set inclusion. Now From (7∗), the monotonicity of the
mixed volume V2(K, · ), Lemma 1∗ and (1), identity (12∗), and the L2-mixed
volume inequality (10∗), we have

1 = V2(K,K)/V (K)

≥ V2(K,E)/V (K)

= V2(K,Γ∗−2E
∗)/V (K)

= V2(E∗,Γ∗−2K)/V (E∗)

≥ [V (E∗)/ωn]−2/n[V (Γ∗−2K)/ωn]2/n

= [ωn/V (E)]−2/n[ωn/V (Γ−2K)]2/n,

where the last equality is a consequence of the fact that, by (2), the product of the
volumes of polar reciprocal ellipsoids, that are centered at the origin, is ω2

n. Hence
we have,

V (Γ−2K) ≥ V (E) = V (Γ−2E),

with equality (from the equality conditions of the L2-mixed volume inequality (10∗))
implying that E and Γ−2K are dilates, which in turn implies that E = Γ−2K. �

The infimum of V (Γ−2K)/V (K) taken over all convex bodies that contain the
origin in their interiors is 0. To get a positive lower bound some restriction must
be made on the positions of the bodies (relative to the origin).

A fundamental result due to Ball [B] is that if K is an origin-symmetric convex
body, then there exists an ellipsoid EK ⊂ K, centered at the origin, such that
V (EK) ≥ 2−nωnV (K). Barthe [Br] improved Ball’s theorem by showing that for
each origin-symmetric convex body K that is not a parallelotope, there exists an
ellipsoid EK ⊂ K, centered at the origin, such that

V (EK) > 2−nωnV (K).

Combine this with Theorem 2∗ and the immediate result is:

Theorem 3∗. Suppose K ⊂ Rn is a convex body that is origin-symmetric, then

V (Γ−2K) ≥ ωn
2n
V (K),

with equality if and only if K is a parallelotope.
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Associated with each convex body K is an important affinely associated point
called the John point, j(K) ∈ intK. This point is the center of the (unique) ellipsoid
of maximal volume that is contained in the body K. (As an aside, the authors note
that in their opinions it would be more appropriate to call this point the Löwner
point.) The John point is an affinely associated point in that for each φ ∈ SL(n)
we have j(φK) = φj(K).

A fundamental result due to Ball [B] is that if K is positioned so that its John
point is at the origin, then there exists an ellipsoid EK ⊂ K, centered at the origin,
such that V (EK) ≥ n!ωn n−n/2(n + 1)−(n+1)/2V (K). Barthe [Br] improved Ball’s
theorem by showing that if K is positioned so that its John point is at the origin,
then unless K is a simplex, there exists an ellipsoid EK ⊂ K, centered at the origin,
such that

V (EK) >
n!ωn

nn/2(n+ 1)(n+1)/2
V (K).

Together with Theorem 2∗ this immediately gives:

Theorem 4∗. If K ⊂ Rn is a convex body positioned so that its John point is at
the origin, then

V (Γ−2K) ≥ n!ωn
nn/2(n+ 1)(n+1)/2

V (K),

with equality if and only if K is a simplex.

The volume-normalized version of the operator Γ2 is the operator that maps each
star body K to [ωn/V (Γ2K)]1/nΓ2K. A classical characterization of the volume-
normalized version of the operator Γ2 is as the solution to the following problem:
Given a fixed star body K, find an ellipsoid centered at the origin, E, that minimizes
V−2(K,E) subject to the constraint that V (E) = ωn. Existence, uniqueness, and
characterization of the solution to the problem are all contained in:

Theorem 5. Suppose K ⊂ Rn is a star body about the origin and E is an ellipsoid
centered at the origin such that V (E) = ωn. Then

V−2(K,E) ≥ V (K) [V (Γ2K)/ωn]2/n,

with equality if and only if E = λΓ2K where λ = [ωn/V (Γ2K)]1/n.

Proof. From (2) and Lemma 1, followed by (12), and the dual Minkowski inequality
(10), we have

V−2(K,E)/V (K) = V−2(K,Γ∗2E
∗)/V (K)

= V−2(E∗,Γ∗2K)/V (E∗)

≥ ω−2/n
n V (Γ2K)2/n,

with equality if and only if E and Γ2K are dilates.
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Suppose K ⊂ Rn is a fixed convex body that contains the origin in its interior.
Find an ellipsoid, E, centered at the origin, which minimizes V2(K,E) subject to the
constraint that V (E) = ωn. The solution of the problem turns out to characterize
the volume-normalized operator Γ−2. Existence, uniqueness, and characterization
of the solution to the problem are all contained in:

Theorem 5∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior and E is an ellipsoid centered at the origin such that V (E) = ωn. Then

V2(K,E) ≥ V (K) [V (Γ−2K)/ωn]−2/n,

with equality if and only if E = λΓ−2K where λ = [ωn/V (Γ−2K)]1/n.

Proof. From (2) and Lemma 1∗, followed by (12∗), and the L2-Minkowski inequality
(10∗), we have

V2(K,E)/V (K) = V2(K,Γ∗−2E
∗)/V (K)

= V2(E∗,Γ∗−2K)/V (E∗)

≥ ω−2/n
n V (Γ∗−2K)2/n,

with equality if and only if E and Γ−2K are dilates.

The L1-analog of the problem solved by Theorem 5∗ was treated by Petty [P2].
Generalizations were considered by Clack [C] and Giannopoulos and Papadimitrakis
[GiPap].

A star body K is said to be in isotropic position if Γ2K is a ball and V (K) = 1.
Note that for each star body there is a GL(n)-transformation that will map the body
into one that is in isotropic position. If the star body, K, is in isotropic position,
then the isotropic constant, LK , of K is defined to be the radius of 1√

n+2
Γ2K. If

K is an arbitrary star body, then define its isotropic constant by

LK =
1√
n+ 2

[
V (Γ2K)
ωnV (K)

]1/n

.

From Theorem 1, it immediately follows that for each star body K,

LK ≥
ω
−1/n
n√
n+ 2

,

with equality if and only if K is an ellipsoid centered at the origin. An important
question (previously mentioned) asks if

sup{LK : K is a convex body in Rn in isotropic position}
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is dominated by a real number independent of the dimension n.

A convex body K will be said to be in dual isotropic position if Γ−2K is a ball
and V (K) = 1. Note that for each convex body there is a GL(n)-transformation
that will map the body into one that is in isotropic position.

If K is in dual isotropic position, then define the dual isotropic constant, L∗K ,
to be the radius of Γ−2K. If K is an arbitrary convex body we can define its dual
isotropic constant by

L∗K =
[
V (Γ−2K)
ωnV (K)

]1/n

.

Theorems 1* and 3* immediately give:

Theorem 6∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. If K origin-symmetric and in dual isotropic position, then

1
2 ≤ L

∗
K ≤ ω

−1/n
n .

Equality on the left-hand side holds if and only if K is a parallelotope and equality
on the right-hand side holds if and only if K is an ellipsoid.

Let v denote (n − 1)-dimensional volume. For u ∈ Sn−1, let u⊥ denote the
1-codimension subspace of Rn that is orthogonal to u. Milman and Pajor [MPa2]
showed that if K is origin-symmetric, then

√
n+2

2
√

3

V (K)
v(K ∩ u⊥)

≤ hΓ2K(u) ≤ n√
2(n+2)

V (K)
v(K ∩ u⊥)

for all u ∈ Sn−1. Equality on the left-hand side holds for K a right cylinder and
u orthogonal to its base, and equality on the right-hand side holds for K a double
right cone and u along its axis.

For u ∈ Sn−1 and a convex body K, let K|u⊥ denote the image of the orthogonal
projection of K onto u⊥.

Theorem 7∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. If K is origin-symmetric, then for every u ∈ Sn−1

2√
n

v(K|u⊥)
V (K)

≤ hΓ∗−2K
(u) ≤ 2

v(K|u⊥)
V (K)

.
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Equality on the left-hand side holds for K a double right cone and u along its axis,
and equality on the right-hand side holds for K a right cylinder and u orthogonal
to its base.

Proof. From (11∗), together with the fact that dS2(K, · ) = h−1
K dSK , and the

Hölder inequality we have

ρ−1
Γ−2K

(u) =

[
1

nV (K)

∫
Sn−1

(√
n|u · v|
hK(v)

)2

hK(v)dSK(v)

]1/2

≥ 1
nV (K)

∫
Sn−1

√
n|u · v|dSK(v)

=
2v(K|u⊥)√
nV (K)

,

which gives the left inequality.
To get the right-hand inequality, note that

ρ−1
Γ−2K

(u) =
[

1
V (K)

∫
Sn−1

|u · v|
hK(v)

|u · v|dSK(v)
]1/2

≤
[

2v(K|u⊥)
V (K)

max
v∈Sn−1

|u · v|
hK(v)

]1/2

=
[

2v(K|u⊥)
V (K)

ρK(u)−1

]1/2

≤ 2v(K|u⊥)
V (K)

,

where the last inequality follows from the well-known and easily-established fact
that V (K) ≤ 2v(K|u⊥)ρK(u).

Theorem 8∗. Suppose K ⊂ Rn is a convex body that contains the origin in its
interior. If K is origin-symmetric and in dual isotropic position, then

v(K|u⊥) ≤
√
n,

for all u ∈ Sn−1. Equality holds if and only if K is a cube and u is in the direction
of one of its vertices.

Proof. Suppose K is not a cube. From the left-hand inequality of Theorem 7∗, the
fact that [V (Γ−2K)/ωn]1/n is the radius of the ball Γ−2K, together with Theorem
3∗, we have

2v(K|u⊥)√
nV (K)

≤
[
V (Γ−2K)

ωn

]−1/n

< 2V (K)−1/n. �
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Keith Ball conjectured that each origin-symmetric convex body can be GL(n)-
transformed into a body for which the inequality of Theorem 8∗ holds. Giannopoulos
and Papadimitrakis [GiPap] showed that this can be accomplished by making the
body “surface isotropic”. Theorem 8∗ shows that this can also be done by making
the body dual isotropic.

Acknowledgement. The authors are most grateful to the referee for the extra-
ordinary attention he gave to our paper.
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