
CURVATURE AND THE THEOREMA EGREGIUM OF GAUSS

DEANE YANG

In this note, we describe a simple way to define the second fundamental form of a hypersur-
face in Rn and use it to prove Gauss’s Theorema Egregium, as well as its analogue in higher
dimensions. The proof can be extended to submanifolds of higher codimension.

1. Rigid motions

Let e1, . . . , en denote the standard basis of Rn. Given a nonzero vector ν ∈ Rn, let ν⊥ denote
the linear hyperplane normal to ν.

A rigid motion is a map Φ: Rn → Rn given by

Φ(x) = Ax+ b,

where A ∈ SO(n) and b ∈ Rn.
A simple fact that we will use is the following: Given any x ∈ Rn and hyperplane P passing

through x, there exists a rigid motion R such that R(x) = 0 and R(P ) = e⊥n . The rigid motion
is unique up to a rotation of e⊥n .

2. Definition of a hypersurface

A hypersurface is a subset S ⊂ Rn such that for each x ∈ S, there exists a hyperplane T
passing through x such that a neighborhood of x in S is graph of a smooth function over the
plane T .

In other words, S is a hypersurface if for any x ∈ S, there exists a hyperplane Tx containing
x with normal ν and a continuous function f : Tx → R such that

f(x) = 0,

and there exists a neighborhood D ⊂ Tx of x such that

y + f(y)ν ∈ S for each y ∈ D.

If df(x) = 0, then we call ν a normal and T the tangent plane to S at x. If |ν| = 1, then it is
called a unit normal.

If S is a hypersurface and x ∈ S, then the tangent plane Tx is unique. The unit normal ν
and therefore the function f restricted to a sufficiently small neighborhood of x ∈ T are unique
up to sign.

Given any x ∈ S and unit normal ν at x, there is a rigid motion R that moves x to the
origin and ν to e3. In particular, R(S) is locally the graph of a function f over the horizontal
plane e⊥n . The rigid motion and therefore the function f are uniquely defined up to a rotation
of e⊥n . It follows that any function of f and its derivatives, evaluated at x, that is invariant
under rotations of e⊥n and changes of the sign of f is a pointwise geometric invariant of S.
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3. The second fundamental form

We can therefore assume below that x = 0 and ν = en, and T = e⊥n . Since S is the graph of
f in a neighborhood of 0, it is locally the image of the smooth embedding

y 7→ y + f(x)en, y ∈ T.

Since the tangent plane T is horizontal at x = 0,

df(0) = 0.

Since f(0) = 0 and df(0) = 0, the simplest geometric invariants of S are defined in terms of the
Hessian of f at 0, which is uniquely defined up to rotations of T . It follws that any function
of the eigenvalues of ∂2(0)f defines a local geometric invariant, up to sign, of S. Any even
function is a geometric invariant. In particular, if n = 2, the determinant of ∂2f(0) is a local
geometric invariant known as Gauss curvature.

The pullback of the Hessian to Tx is the second fundamental form of S at x.

4. Isometric hypersurfaces

Two hypersurfaces S and Ŝ are isometric if there exists a smooth diffeomorphism

Φ : S → Ŝ

such that the length of any smooth curve C ⊂ S is equal to the length of the curve Φ(C) ⊂ Ŝ.
If x̂ = Φ(x), we can always move the two hypersurfaces, as described above, so that x̂ = x = 0,

Tx̂ = Tx = T , S is the graph of a function f and Ŝ the graph of another function f̂ . Moreover,
there is a diffeomorphism φ : T → T such that

Φ(y + f(y)en) = φ(y) + f̂(φ(y))en.

The diffeomoprhism Φ : S → Ŝ preserves the lengths of all curves if and only if

∂iŷ · ∂j ŷ = ∂iy · ∂jy,

where

ŷ = φk(x)ek + f̂(φ(x))en

y = xiei + f(x)en,

for each x ∈ T . In other words,

(1) ∂iφ · ∂jφ+ ∂pf̂∂iφ
p∂qf̂∂jφ

q = δij + ∂if∂jf.

Note that

∂if(0) = ∂if̂(0) = 0

∂iφ
j(0) = δji ,

for all 1 ≤ i, j ≤ n− 1. Therefore, if we differentiate (1) and evaluate at x = 0, we get

∂2ikφ
j + ∂2jkφ

i = 0.

It follows, by the usual argument,

(2) ∂2ikφ
j = −∂2jkφi = ∂2jiφ

k = −∂2ikφj,
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that ∂2jkφ
i(0) = 0. If we differentiate (1) again, evaluate at x = 0, and cycle through the indices

i, j, k, l, we get

∂3iklφ
j + ∂3jklφ

i + ∂2ikf̂∂
2
jlf̂ + ∂2ilf̂∂

2
jkf̂ = ∂2ikf∂

2
jlf + ∂2ilf∂

2
jkf(3)

∂3jliφ
k + ∂3kliφ

j + ∂2jlf̂∂
2
kif̂ + ∂2jif̂∂

2
klf̂ = ∂2jlf∂

2
kif + ∂2jif∂

2
klf(4)

∂3kijφ
l + ∂3lijφ

k + ∂2kif̂∂
2
lj f̂ + ∂2kj f̂∂

2
lif̂ = ∂2kif∂

2
ljf + ∂2kjf∂

2
lif(5)

∂3ljkφ
i + ∂3ijkφ

l + ∂2lj f̂∂
2
ikf̂ + ∂2lkf̂∂

2
ij f̂ = ∂2ljf∂

2
ikf + ∂2lkf∂

2
ijf.(6)

Therefore,

(7) (3)− (4) + (5)− (6)

eliminates φ and gives

(8) ∂2ikf̂∂
2
jlf̂ − ∂2ilf̂∂2ikf̂ = ∂2ikf∂

2
jlf − ∂2ilf∂2ikf.

It follows that if e1, . . . , en of Tx comprise an orthonormal basis of Tx, êi = Φ∗ei, 1 ≤ i ≤ n, the
corresponding orthonormal basis of Tx̂, and

Hij = ∂2ijf(0)

Ĥij = ∂2ij f̂(0),

are the second fundamental forms of S and Ŝ, then

R̂ijkl = Rijkl,

where

Rijkl = HikHjl −HilHjk

R̂ijkl = ĤikĤjl − ĤilĤjk

These are, of course, the Riemann curvature tensors of S and Ŝ. That they are the same for
the two surfaces, which have the same intrinsic but not necessarily the same extrinsic geometry,
shows that the Riemann curvature tensor is an intrinsic geometric invariant for hypersurfaces
in Rn.

If n = 2, then this proves the Theorema Egregium of Gauss, because the only nonzero
component of R is the Gauss curvature K = R1212 = detH.

5. Tensor identities

Most of the proof above involves only differentiation and straightforward calculations. The
only significant steps are the following:

(1) Definition of a hypersurface
(2) If a map between two hypersurfaces preserves lengths of curves, then the map satisfies

(1).
(3) Most importantly, the tensor calculations done in (2) and (7). These are equivalent to

the following tensor identities:

(T ⊗ S2T ) ∩ (Λ2T ⊗ T ) = {0}
(T ⊗ S3T ) ∩ (Λ2T ⊗ Λ2T ) = {0}.
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