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Abstract

The classical Minkowski problem lead to the Lp Minkowski problem and now
to the Orlicz-Minkowski problem. Existence is demonstrated for the even
Orlicz-Minkowski problem. A byproduct is a new approach to the solution
of the classical Minkowski problem.

1. Introduction

The Minkowski problem concerns the existence, uniqueness, and stabil-
ity of convex hypersurfaces whose Gauss curvature (possibly in a generalized
sense) is prescribed as a function of the outer unit normals. The Minkowski
problem is one of the centerpieces of the classical Brunn-Minkowski theory.
The complete solution to the Minkowski problem (for arbitrary “data” —
with no smoothness assumptions) goes back exactly three-quarters of a cen-
tury to the work of Aleksandrov and Fenchel and Jessen (see Schneider [55]
for references). Of course, when the Minkowski “data” is discrete then the
solution goes back to Minkowski’s work at the turn of the 19th into the 20th
Century.

Almost a century after Minkowski unveiled the Brunn-Minkowski theory,
beginning largely with [32, 33], an Lp version of the Brunn-Minkowski theory
began to emerge. This theory has expanded rapidly. (See e.g. [1 - 5, 7 - 9, 10,
12, 13, 15 - 22, 25 - 38, 40 - 44, 46, 47, 49 - 52, 54, 56, 57 - 59, 61, 62].) The
Lp Minkowski problem was a centerpiece of this new Lp-Brunn-Minkowski
theory.

The regular Lp Minkowski problem seeks solutions h : Sn−1 → (0,∞) to
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the PDE
h1−p det(∇ijh+ eijh) = g (1)

for a given continuous function g : Sn−1 → R (called the “data”), where
the parameter p is a real number and eij is the standard Riemannian metric
on Sn−1. The case p = 1 is classical with landmark contributions such as
Cheng and Yau [6] and Pogorelov [53].

The general Lp Minkowski problem asks: Given a real p, what are the
necessary and sufficient conditions on a Borel measure µ on the unit sphere,
Sn−1, such that there exists a convex body K in Rn with support function
hK and surface area measure SK (see Section 1 for definitions) so that

h1−p
K dSK = dµ. (2)

The solutions to the general Lp Minkowski problem (2) may be viewed as
weak solutions to the regular Lp Minkowski problem (1). While regularity
is a central focus in the fields of partial differential equations and differ-
ential geometry, the existence and the uniqueness of weak solutions of the
Minkowski problem are of paramount interest to those working in convex
geometric and functional analysis. This is because it is precisely these solu-
tions that correspond to support functions of polytopes or to Banach norms
(which often have limited smoothness).

The even Lp Minkowski problem seeks solutions under the assumption
that the data measure µ is an even Borel measure on Sn−1 (i.e. assumes
the same values on antipodal Borel sets) or the data function g is an even
function (i.e. assumes the same values on antipodal points of Sn−1). The
Lp Minkowski problem with even data is not only natural but of practical
interest because its solutions correspond to norms of Banach spaces.

In this paper the ”Lp Minkowski problem” will always refer to the general
Lp Minkowski problem (2). The case p = 1 of the Lp Minkowski problem
(2) is of course the classical Minkowski problem. For p > 1, a solution to
the even Lp Minkowski problem was given in [32] under the assumption that
p 6= n. In [39], it was shown that, for p 6= n, the Lp Minkowski problem
(2) has an equivalent volume-normalized formulation and a solution of the
even volume-normalized Lp Minkowski problem was given for all p > 1. The
regularity of the even Lp Minkowski problem was considered in [34].

In the plane (n = 2), the Lp Minkowski problem was treated by Stancu
[57, 58, 59], Umanskyi [61], Chen [5], and most recently by Jiang [24].

The Lp Minkowski problem (without the assumption that the data is
even) was treated by Guan and Lin [15] and later by Chou and Wang [7].
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Hug et al [23] gave an alternate approach to some of the results of Chou and
Wang [7].

The solution of the even Lp Minkowski problem was a critical ingredient
that allowed the authors of [38] to extend Zhang’s affine Sobolev inequality
[63] and obtain the Lp affine Sobolev inequality and later enabled Cianchi et
al [8] to establish the affine Moser-Trudinger and the affine Morrey-Sobolev
inequalities.

Recent work of Haberl and Schuster [19], [20], Haberl, Schuster, and
Xiao [21] and the recent work of Ludwig and Reitzner [31], as well as Ludwig
[30], shows the need to take the next step in the evolution of the Brunn-
Minkowski theory towards an Orlicz-Brunn-Minkowski theory. This will be
the third paper in a series that attempts to develop some of the elements of
an Orlicz-Brunn-Minkowski theory.

Suppose ϕ : (0,∞)→ (0,∞) is a fixed continuous function. The aim of
this paper is to study the even Lϕ Minkowski problem: If µ is an even finite
Borel measure on Sn−1 which is not concentrated on a great subsphere of
Sn−1, then does there exist an origin symmetric convex body K in Rn such
that

cϕ(hK) dSK = dµ,

for some positive number c? We will show that under some mild assumptions
on ϕ, the even Lϕ Minkowski problem does have a solution. For example
we shall establish:

Theorem. Suppose ϕ : (0,∞)→ (0,∞) is a continuous decreasing function.
If µ is an even finite Borel measure on Sn−1 which is not concentrated on a
great subsphere of Sn−1, then there exists an origin symmetric convex body
K in Rn such that

cϕ(hK) dSK = dµ,

where c is a power of the volume of K — specifically, c = V (K)
1
2n
−1.

When ϕ and the data µ are assumed to be sufficiently smooth, and under
certain other restrictions, the existence of solutions to the Lϕ Minkowski
problem was already demonstrated by Chou and Wang [7]. For applications
in analysis (such as in obtaining analytic inequalities of the type presented
in [63] and [38]) and for applications in geometry (such as in obtaining affine
isoperimetric inequalities), various Banach norms and convex bodies must
be constructed. These constructions amount to solving an Lϕ Minkowski
problem — but usually with minimal restrictions on ϕ and the measure µ.
(Note that a polytopal solution of the Lϕ Minkowski problem corresponds
to a measure µ whose support is a finite set.) In this paper we will establish
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the existence of solutions to the Lϕ Minkowski problem with such minimal
restrictions on ϕ and µ.

One interesting feature of our work is that it presents a new approach to
the classical Minkowski problem as well as the even Lp Minkowski problem
for p > 0 and p 6= n.

2. Preliminaries

For quick later reference we develop some notation and basic facts about
convex bodies. General references for the theory of convex bodies are the
excellent books of Gardner [11], Gruber [14], Schneider [55], and Thompson
[60].

Our setting will be Euclidean n-space Rn where n ≥ 2. The standard
inner product of the vectors x, y ∈ Rn is denoted by x · y. We write Sn−1 =
{x ∈ Rn : x · x = 1} for the boundary of the Euclidean unit ball B in Rn.

The set of positive continuous functions on the sphere Sn−1 will be de-
noted by C+(Sn−1). This set will be viewed as equipped with the metric
induced by the maximum norm

‖f − g‖∞ = max
u∈Sn−1

|f(u)− g(u)|.

We write C+
e (Sn−1) for the subspace of C+(Sn−1) consisting of even func-

tions only.
Write V for n-dimensional Lebesgue measure and Hn−1 for (n − 1)-

dimensional Hausdorff measure. The letter µ will be used exclusively to
denote a finite Borel measure on Sn−1. For such a measure µ, we denote by
|µ| its total mass, i.e. |µ| = µ(Sn−1). The letter c (possibly with subscripts
or other distinguishing features) will be used exclusively to denote a positive
real number.

A convex body is a compact convex subset of Rn. The set of convex bodies
in Rn containing the origin in their interiors is denoted by Kno . The set of
convex bodies in Rn that are symmetric about the origin will be denoted by
Kne .

A compact, convex K ⊂ Rn is uniquely determined by its support func-
tion hK : Rn → R, where hK(x) = max{x · y : y ∈ K}, for x ∈ Rn.
For example, the support function of the line segment v̄ joining the points
±v ∈ Rn is given by

hv̄(x) = |x · v|, x ∈ Rn.
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We will need the trivial fact that for the support function of the dilate
cK = {cx : x ∈ K} of a convex body K we have

hcK = chK , c > 0. (3)

Note that support functions are positively homogeneous of degree one and
subadditive. It follows immediately from the definition of support functions
that for convex bodies K,L,

K ⊂ L ⇐⇒ hK ≤ hL. (4)

Consequently, the support function of a body K ∈ Kno is bounded from
above and below by positive reals.

The set Kno will be viewed as equipped with the Hausdorff metric and
thus for a sequence {Ki} of bodies in Kno that limi→∞Ki = K ∈ Kno provided
that

‖hKi − hK‖∞ → 0.

A boundary point x ∈ ∂K is said to have u ∈ Sn−1 as an outer normal
vector provided x · u = hK(u). A boundary point is said to be singular if it
has more than one unit normal vector. It is well known (see, e.g., [55]) that
the set of singular boundary points of a convex body has Hn−1-measure 0.

For a convex body K and each Borel set ω ⊂ Sn−1, the reverse spherical
image, τ(K,ω), of K at ω is the set of all boundary points of K which have
an outer unit normal belonging to the set ω. Associated with each convex
body K ∈ Kno is a Borel measure, SK , on Sn−1 called the Aleksandrov-
Fenchel-Jessen surface area measure of K, defined by

SK(ω) = Hn−1(τ(K,ω)), (5)

for each Borel set ω ⊆ Sn−1. Observe that for the surface area measure of
the dilate cK of K we have

ScK = cn−1SK , c > 0. (6)

We will also make critical use of the weak continuity of surface area measures;
i.e., if {Ki} is a sequence of bodies in Kno then

lim
i→∞

Ki = K ∈ Kno =⇒ lim
i→∞

SKi = SK , weakly. (7)

The mixed volume V1(K,L) of the convex bodies K,L ∈ Kno may be defined
by

V1(K,L) =
1
n

∫
Sn−1

hL dSK . (8)
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The fact that
V (K) = V1(K,K),

and hence
V (K) =

1
n

∫
Sn−1

hK dSK , (9)

is of critical importance. The fundamental inequality for mixed volumes is
Minkowski’s mixed volume inequality: For K,L ∈ Kno ,

V1(K,L)n ≥ V (K)n−1V (L) (10)

with equality if and only K and L are homothetic.

3. Aleksandrov bodies

A function h ∈ C+(Sn−1) defines a family {Hu}u∈Sn−1 of hyperplanes

Hu = {x ∈ Rn : x · u = h(u)}.

This family gives rise to concepts such as envelopes in classical differential
geometry, generalized envelopes in convex geometric analysis (see, e.g., [48]),
and hedgehogs (see, e.g., [45]).

We shall be interested in the intersection of the halfspaces that are as-
sociated to h by the family {Hu}u∈Sn−1 . This gives rise to the convex body

K =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ h(u)}.

The body K is called the Aleksandrov body associated with h. Note that
since h is both positive and continuous its Aleksandrov body, K, must be
an element of Kno . The Aleksandrov body associated with h can alternatively
be defined as the unique maximal element, with respect to set inclusion, of
the set

{Q ∈ Kno : hQ ≤ h}.

For the Aleksandrov body K associated with h we now examine equality (in
Sn−1) in the inequality

hK ≤ h

in some detail. Aleksandrov showed that each element of τ(K,ωh), the
reverse spherical image of K of the difference set

ωh = {u ∈ Sn−1 : hK(u) < h(u)},
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must be a singular boundary point of K. Since the set of singular boundary
points of a convex body has Hn−1-measure zero, and since by (5), we know
that SK(ωh) = Hn−1(τ(K,ωh)), it follows that SK(ωh) = 0. Consequently,
while hK ≤ h,

hK = h, a.e. with respect to SK . (11)

We will make use of the following three basic properties of Aleksandrov
bodies. First, if h is the support function of a convex body K ∈ Kno , then K
itself is the Aleksandrov body associated with h. Second, as is easily shown,
if h is an even function, then the Aleksandrov body associated with h is
origin-symmetric. Third and critical, is Aleksandrov’s convergence lemma:
If the functions hi ∈ C+(Sn−1) have associated Aleksandrov bodiesKi ∈ Kno ,
then

hi → h ∈ C+(Sn−1), uniformly on Sn−1 =⇒ Ki → K,

where K is the Aleksandrov body associated with h.
The volume V (h) of a function h ∈ C+(Sn−1) is defined as the volume

of the Aleksandrov body associated with h. Since the Aleksandrov body
associated with the support function hK of a convex body K ∈ Kno is the
body K itself, we have

V (hK) = V (K). (12)

From Aleksandrov’s Convergence Lemma and the continuity of volume on
Kno we see that

V : C+(Sn−1)→ R is continuous.

Let I ⊂ R be an interval containing 0 and suppose that ht(u) = h(t, u) :
I × Sn−1 → (0,∞) is continuous. For fixed t ∈ I, let

Kt =
⋂

u∈Sn−1

{x ∈ Rn : x · u ≤ h(t, u)}

be the Aleksandrov body associated with ht. The family of bodies {Kt}t∈I
will be called the family of Aleksandrov bodies associated with h. Obviously,
from (11) we have

hKt ≤ ht and hKt = ht, a.e. with respect to SKt . (13)

for each t ∈ I.
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Lemma 1. Let I ⊂ R be an interval containing 0 and some positive num-
ber and let h(t, u) : I × Sn−1 → (0,∞) be continuous and such that the
convergence in

h′+(0, u) = lim
t→0+

h(t, u)− h(0, u)
t

(14)

is uniform on Sn−1. If {Kt}t∈I is the family of Aleksandrov bodies associated
with h, then

lim
t→0+

V (Kt)− V (K0)
t

=
∫
Sn−1

h′+(0, u) dSK0(u).

Proof. The uniform convergence of (14) implies that ht → h0, uniformly on
Sn−1. Therefore, the Aleksandrov Convergence Lemma (mentioned above)
yields

lim
t→0+

Kt = K0. (15)

By (7) we conclude that the SKt converge weakly to SK0 as t→ 0. Since the
measures SKt are finite, converge weakly to SK0 and since the convergence
in

lim
t→0+

h(t, u)− h(0, u)
t

is uniform on Sn−1, we obtain

lim
t→0+

∫
Sn−1

ht(u)− h0(u)
t

dSKt(u) =
∫
Sn−1

h′+(u, 0) dSK0(u). (16)

Formulas (9) and (13) imply

V (Kt) =
1
n

∫
Sn−1

hKt(u) dSKt(u) =
1
n

∫
Sn−1

ht(u) dSKt(u). (17)

From (17), (8), and inequality (13) at t = 0, we have

lim inf
t→0+

V (Kt)− V1(Kt,K0)
t

=
1
n

lim inf
t→0+

∫
Sn−1

ht(u)− hK0(u)
t

dSKt(u)

≥ 1
n

lim inf
t→0+

∫
Sn−1

ht(u)− h0(u)
t

dSKt(u),

which when combined with (16) gives

lim inf
t→0+

V (Kt)− V1(Kt,K0)
t

≥ 1
n

∫
Sn−1

h′+(u, 0) dSK0(u). (18)
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For the sake of brevity set

l =
1
n

∫
Sn−1

h′+(u, 0) dSK0(u).

Inequality (18) and Minkowski’s mixed volume inequality (10) show

l ≤ lim inf
t→0+

V (Kt)− V1(Kt,K0)
t

≤ lim inf
t→0+

V (Kt)− V (Kt)1− 1
nV (K0)

1
n

t
.

But (15) gives limt→0+ V (Kt) = V (K0) and hence

l ≤ V (K0)1− 1
n lim inf

t→0+

V (Kt)
1
n − V (K0)

1
n

t
. (19)

Now (8), the inequality in (13), and the uniform convergence in (14) give

lim sup
t→0+

V1(K0,Kt)− V (K0)
t

=
1
n

lim sup
t→0+

∫
Sn−1

hKt(u)− h0(u)
t

dSK0(u)

≤ 1
n

lim sup
t→0+

∫
Sn−1

ht(u)− h0(u)
t

dSK0(u)

=
1
n

∫
Sn−1

h′+(u, 0) dSK0(u)

= l.

This, together with Minkowski’s mixed volume inequality (10), yields

l ≥ lim sup
t→0+

V1(K0,Kt)− V (K0)
t

≥ lim sup
t→0+

V (K0)1− 1
nV (Kt)

1
n − V (K0)

t
,

and hence

l ≥ V (K0)1− 1
n lim sup

t→0+

V (Kt)
1
n − V (K0)

1
n

t
. (20)

Combining (19) and (20) gives

l = V (K0)1− 1
n lim
t→0+

V (Kt)
1
n − V (K0)

1
n

t
. (21)

Define a function g : I → R by g(t) = V (Kt)
1
n . Identity (21) shows that the

right derivative of g exists at 0. But this implies that the right derivative of
gn exists at 0 and that

lim
t→0+

g(t)n − g(0)n

t
= ng(0)n−1 lim

t→0+

g(t)− g(0)
t

.
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Thus the definition of g and (21) prove

lim
t→0+

V (Kt)− V (K0)
t

= nl,

which completes the proof of the lemma.

Corollary 1. Let I ⊂ R be an interval containing 0 in its interior and let
h(t, u) : I × Sn−1 → (0,∞) be continuous such that the convergence in

h′(0, u) = lim
t→0

h(t, u)− h(0, u)
t

is uniform on Sn−1. If {Kt}t∈I is the family of Aleksandrov bodies associated
with h, then

lim
t→0

V (Kt)− V (K0)
t

=
∫
Sn−1

h′(0, u) dSK0(u).

Proof. By Lemma 1, it only remains to show that

lim
t→0−

V (Kt)− V (K0)
t

=
∫
Sn−1

h′(0, u) dSK0(u). (22)

To that end, define h̃(t, u) : −I × Sn−1 → (0,∞) by h̃(t, u) = h(−t, u). For
the corresponding family {K̃−t}t∈I of Aleksandrov bodies associated with h̃
we have K̃−t = Kt and K̃0 = K0. Thus, by Lemma 1,

lim
t→0−

V (Kt)− V (K0)
−t

= lim
t→0+

V (K̃t)− V (K̃0)
t

=
∫
Sn−1

h̃′(0, u) dSK0(u).

Obviously, h̃′(0, u) = −h′(0, u), which immediately implies (22).

The following lemma is a slight variant of a standard result about differ-
entiability under an integral sign. For the sake of completeness, we include
a proof.

Lemma 2. Let φ : (0,∞)→ (0,∞) be continuously differentiable, I ⊂ R be
an open interval, and

h : I × Sn−1 → (0,∞), (t, u) 7→ h(t, u)

be a continuous function such that the partial derivative ∂h
∂t (t, u) exists for

all (t, u) ∈ I×Sn−1. If ∂h
∂t is bounded and h is bounded from above and from

below by positive numbers, then the function

H(t) =
∫
Sn−1

(φ ◦h)(t, u) dµ(u), t ∈ I,
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is differentiable on I and

H ′(t) =
∫
Sn−1

∂(φ ◦h)
∂t

(t, u) dµ(u). (23)

Moreover, if ∂(φ ◦h)/∂t is continuous with respect to t, then H ′ is continu-
ous.

Proof. Since φ′, the derivative of φ, is assumed to be continuous and h is
bounded from above and from below by positive numbers, there exists a
c1 ∈ (0,∞) such that

|(φ′ ◦h)(t, u)| ≤ c1

for all (t, u) ∈ I × Sn−1. This, the chain rule, and the assumption that ∂h
∂t

is bounded shows that there exists a c2 ∈ (0,∞) such that∣∣∣∣∂(φ ◦h)
∂t

(t, u)
∣∣∣∣ =

∣∣∣∣((φ′ ◦h) · ∂h
∂t

)
(t, u)

∣∣∣∣ ≤ c2, (24)

for all (t, u) ∈ I × Sn−1.
Let {ti} be a sequence with limi→∞ ti = t ∈ I and ti 6= t for every i ∈ N.

Set
fi =

(φ ◦h)(ti, ·)− (φ ◦h)(t, ·)
ti − t

, i ∈ N.

The mean value theorem shows that for each i ∈ N and u ∈ Sn−1 there
exists a t′i = t′i(u) ∈ I such that

|fi(u)| =
∣∣∣∣∂(φ ◦h)

∂t
(t′i, u)

∣∣∣∣ ≤ c2,

where the last inequality follows from (24). Since the measure µ is assumed
to be finite, we therefore proved that all the |fi| are bounded from above
by the same integrable function. By applying the dominated convergence
theorem to the sequence {fi} we get the differentiability of H and (23).

The last assertion of the lemma is again an immediate consequence of
(24) and the dominated convergence theorem.

4. Orlicz norms

Throughout this section, let φ : [0,∞) → [0,∞) be strictly increasing,
continuously differentiable on (0,∞) with positive derivative, and satisfy
limt→∞ φ(t) = ∞. Note that under these assumptions, φ has an inverse
φ−1 : φ([0,∞))→ [0,∞) which is continuously differentiable on φ((0,∞)).
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Let µ be a finite Borel measure on the sphere Sn−1. For a continuous
function f : Sn−1 → [0,∞), the Orlicz norm ‖f‖φ is defined by

‖f‖φ = inf
{
λ > 0 :

1
|µ|

∫
Sn−1

φ

(
f

λ

)
dµ ≤ φ(1)

}
. (25)

We remark that the Orlicz norm of a function depends not only on φ but
also on µ although this is not reflected in our notation. Observe that for
continuous f : Sn−1 → [0,∞),

‖cf‖φ = c‖f‖φ, c > 0. (26)

In particular we have
‖c‖φ = c, c > 0. (27)

Moreover, it follows immediately from the monotonicity of φ that for con-
tinuous f, g : Sn−1 → [0,∞),

f ≤ g =⇒ ‖f‖φ ≤ ‖g‖φ. (28)

Lemma 3. Suppose µ is a finite Borel measure on the sphere and f :
Sn−1 → [0,∞) is a continuous function such that µ({f > 0}) > 0. Then
the Orlicz norm ‖f‖φ of f is positive and

‖f‖φ = λ0 ⇐⇒ 1
|µ|

∫
Sn−1

φ

(
f

λ0

)
dµ = φ(1).

Proof. Define a function ψ : (0,∞)→ [0,∞), for λ > 0, by

ψ(λ) =
1
|µ|

∫
Sn−1

φ

(
f

λ

)
dµ.

Since φ is strictly increasing and µ({f > 0}) > 0, the function ψ is strictly
decreasing. It therefore has an inverse ψ−1 : ψ((0,∞))→ (0,∞).

The dominated convergence theorem and the continuity of φ on (0,∞),
show that ψ is continuous, as well.

By the non-negativity of φ, Fatou’s lemma, and the fact that limt→∞ φ(t) =
∞ we have

lim inf
λ→0

ψ(λ) ≥ lim inf
λ→0

1
|µ|

∫
{f>0}

φ

(
f

λ

)
dµ

≥ 1
|µ|

∫
{f>0}

lim inf
λ→0

φ

(
f

λ

)
dµ

= ∞,
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and hence
lim
λ→0

ψ(λ) =∞. (29)

Next, we will show that

φ(1) ∈ ψ((0,∞)). (30)

Since f is continuous on Sn−1, there exists a c ∈ (0,∞) with f(u) < c for
every u ∈ Sn−1. Thus, by the monotinicity of φ,

ψ(λ) =
1
|µ|

∫
Sn−1

φ

(
f

λ

)
dµ <

1
|µ|

∫
Sn−1

φ
( c
λ

)
dµ = φ(c/λ),

for every positive λ. In particular, ψ(2c) < φ(1/2) < φ(1). From (29)
and the continuity of ψ we therefore deduce (30) by the intermediate value
theorem.

Finally (30) and the strict monotonicity of ψ prove

‖f‖φ = inf {λ > 0 : ψ(λ) ≤ φ(1)} = ψ−1(φ(1)).

This shows that ‖f‖φ > 0 and establishes the desired equivalence.

For a continuous f : Sn−1 → [0,∞) with ‖f‖φ > 0, define

〈f〉 =
f

‖f‖φ
. (31)

From (26) we see that we always have ‖〈f〉‖φ = 1, and now Lemma 3 tells
us that if µ is such that µ({f > 0}) > 0, then

1
|µ|

∫
Sn−1

φ ◦ 〈f〉 dµ = φ(1). (32)

Lemma 4. Let {fi} be a sequence of nonnegative continuous functions on
Sn−1 with µ({fi > 0}) > 0 for every i. If

fi → f uniformly on Sn−1

and µ({f > 0}) > 0, then
‖fi‖φ → ‖f‖φ.
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Proof. From the uniform convergence, we know that there exists a real c > 0
such that fi(u) ≤ c for all i and all u ∈ Sn−1. From (27) and (28) we thus
obtain

0 ≤ ‖fi‖φ ≤ ‖c‖φ = c

for every i. Thus the sequence {‖fi‖φ} is bounded. To show that the
sequence converges to ‖f‖φ, we prove that every convergent subsequence
converges to ‖f‖φ. Denote an arbitrary convergent subsequence of {‖fi‖φ}
by {‖fi‖φ} as well.

To see that limi→∞ ‖fi‖φ > 0, suppose the contrary, namely that ‖fi‖φ →
0. Then Lemma 3, the non-negativity of φ, Fatou’s lemma, and limt→∞ φ(t) =
∞ would produce the desired contradiction:

φ(1) = lim
i→∞

1
|µ|

∫
Sn−1

φ

(
fi
‖fi‖φ

)
dµ

≥ lim inf
i→∞

1
|µ|

∫
{f>0}

φ

(
fi
‖fi‖φ

)
dµ

≥ 1
|µ|

∫
{f>0}

lim inf
i→∞

φ

(
fi
‖fi‖φ

)
dµ

= ∞.

Thus limi→∞ ‖fi‖φ > 0, and from the continuity of φ and Lemma 3 we
therefore deduce

1
|µ|

∫
Sn−1

φ

(
f

limi→∞ ‖fi‖φ

)
dµ = lim

i→∞

1
|µ|

∫
Sn−1

φ

(
fi
‖fi‖φ

)
dµ = φ(1).

Lemma 3 again shows limi→∞ ‖fi‖φ = ‖f‖φ.

Lemma 5. If µ is a finite Borel measure on the sphere Sn−1 which is not
concentrated on a great subsphere of Sn−1, then there exists a real c > 0
such that ‖hv̄‖φ > c for every v ∈ Sn−1.

Proof. Note that since µ is not concentrated on a great subsphere of Sn−1,
we have, for every v ∈ Sn−1,

µ({hv̄ > 0}) = µ(Sn−1\v⊥) > 0,

where v⊥ denotes the codimension 1 subspace orthogonal to v. Hence
Lemma 3 shows that ‖hv̄‖φ > 0 for every unit vector v. In order to es-
tablish the assertion of the lemma, it suffices to prove that the function
v 7→ ‖hv̄‖φ is continuous.

Suppose vi ∈ Sn−1 and vi → v. That hv̄i → hv̄, uniformly on Sn−1 is
easily seen. Thus ‖hv̄i‖φ converges to ‖hv̄‖φ by Lemma 4. This establishes
the desired continuity.
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5. The even Orlicz-Minkowski problem

Theorem 1. Suppose ϕ : (0,∞)→ (0,∞) is a continuous decreasing func-
tion. If µ is an even finite Borel measure on Sn−1 which is not concentrated
on a great subsphere of Sn−1, then for any 0 < α < 1 there exists an origin
symmetric convex body K in Rn such that

cϕ(hK) dSK = dµ,

where c = V (K)
α
n
−1.

Note that for ϕ ≡ 1, Theorem 1 provides a solution to the even Minkowski
problem by (6).

Proof. Define the function φ : [0,∞)→ [0,∞) by

φ(t) =
∫ t

0

1
ϕ(s)

ds.

Observe that since ϕ is decreasing and 0 < α < 1, it follows that for c > 0

lim
t→∞

φ(ct)/tα =∞, (33)

and
lim
t→0+

φ(t)/tα = 0. (34)

Since ϕ is decreasing, the derivative of φ is increasing and therefore the
function φ is convex.

Furthermore, for c > 0 let ψc : (0,∞)→ R be defined as

ψc(t) =
(
n
αV (B)

α
n − |µ|φ(ct)

tα

)
tα.

From (33) we conclude that ψc(t) converges to −∞ as t tends to infinity. In
particular, for each c there exists a real rc > 0 such that

t > rc =⇒ ψc(t) ≤ 0. (35)

Motivated by the work of Chou and Wang [7], we define the functional
Φ : C+

e (Sn−1)→ R for f ∈ C+
e (Sn−1), by

Φ(f) = n
αV (f)

α
n −

∫
Sn−1

φ ◦ f dµ.
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Since, as seen in Section 3, the volume V : C+(Sn−1)→ R is continuous, Φ
is continuous as well.

Note that by (12), for every r > 0,

Φ(hrB) = n
αr

αV (B)
α
n − φ(r)|µ| =

(
n
αV (B)

α
n − |µ|φ(r)

rα

)
rα.

From this and (34) we see that Φ(hrB) is positive for small positive r. Hence

∃ K ∈ Kne such that Φ(hK) > 0. (36)

We are searching for a function at which Φ attains a maximum. As will
be seen, the search can be restricted to support functions of origin symmetric
convex bodies. Indeed, recall from Section 3 that the Aleksandrov body K
associated with a given function h ∈ C+

e (Sn−1) is origin symmetric and has
a support function hK which satisfies 0 < hK ≤ h. Since φ is increasing and
V (h) = V (hK) by (12) we deduce Φ(h) ≤ Φ(hK).

Next, we will show that the search for a function at which Φ attains a
maximum can be further restricted to support functions of origin symmetric
bodies contained in some ball of fixed radius. To this end, first note that
the continuous function

v 7−→
∫
Sn−1

hv̄ dµ, v ∈ Sn−1,

is positive since µ is not concentrated on a great subsphere and thus, there
exists a c ∈ (0,∞) such that

1
|µ|

∫
Sn−1

hv̄ dµ ≥ c, (37)

for every v ∈ Sn−1. Let K ∈ Kne and choose vK ∈ Sn−1 such that for a suit-
able rK > 0 the point rKvK is an element of K with maximal distance from
the origin. Since K is origin symmetric, the line segment with endpoints
±rKvK is contained in K. From (3) and (4) we deduce rKhv̄K ≤ hK . The
monotonicity of φ, Jensen’s inequality, and (37) therefore yield∫

Sn−1

φ(hK) dµ ≥
∫
Sn−1

φ(rKhv̄K ) dµ

≥ |µ|φ
(

1
|µ|

∫
Sn−1

rKhv̄K dµ

)
≥ |µ|φ(crK).
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Now (12), the fact that K ⊂ rKB, and the last inequality show that

Φ(hK) = n
αV (K)

α
n −

∫
Sn−1

φ(hK) dµ

≤ n
αr

α
KV (B)

α
n − |µ|φ(crK)

=
(
n
αV (B)

α
n − |µ|φ(crK)

rαK

)
rαK

= ψc(rK).

From (35) we therefore conclude that there exists a real r = rc > 0 such
that

rK > r =⇒ Φ(hK) ≤ 0. (38)

It follows from (36) and (38) that in order to find a maximum of the func-
tional Φ on C+

e (Sn−1), it is sufficient to search among support functions of
members of the set

F = {K ∈ Kne : K ⊂ rB}.

Let {Ki}, Ki ∈ F , be a maximizing sequence for Φ, i.e.

lim
i→∞

Φ(hKi) = sup{Φ(hK) : K ∈ F}.

Obviously, the sequence {Ki} is bounded. Blaschke’s selection theorem (see,
e.g., [55]) guarantees the existence of a convergent subsequence, which we
also denote by {Ki}, with limi→∞Ki = K0. Since the Ki ∈ Kne , the body
K0 is origin symmetric. Moreover, the continuity of volume, (12), and the
positivity of limi→∞Φ(hKi) yield

n
αV (K0)

α
n = lim

i→∞
n
αV (Ki)

α
n = lim

i→∞
n
αV (hKi)

α
n ≥ lim

i→∞
Φ(hKi) > 0.

Consequently, the body K0 has non-empty interior and thus K0 ∈ Kne ∩Kno .
The continuity of Φ now implies, for every f ∈ C+

e (Sn−1),

Φ(f) ≤ Φ(hK0).

Suppose f ∈ C+
e (Sn−1). For sufficiently small δ > 0 we can define a

function, h : (−δ, δ) × Sn−1 → (0,∞), which is bounded from above and
below by positive reals, by

ht(u) := h(t, u) = hK0(u) + tf(u).

17



By Lemma 2 and Corollary 1, the function t 7→ Φ ◦ht is differentiable at 0.
Since K0 is a maximizer of the functional Φ and h0 = hK0 we have

d

dt
(Φ ◦ht)

∣∣∣∣
t=0

= 0.

Calculating this derivative, Lemma 2 and Corollary 1 give

V (K0)
α
n
−1

∫
Sn−1

f dSK0 −
∫
Sn−1

1
ϕ ◦hK0

f dµ = 0.

Since this holds for all positive even continuous functions f on Sn−1, it holds
for all even continuous f on Sn−1 and hence

V (K0)
α
n
−1ϕ(hK0) dSK0 = dµ.

We now establish the following variant of our first theorem.

Theorem 2. Suppose ϕ : (0,∞) → (0,∞) is a continuous function such
that

∫ t
0 1/ϕ(s) ds exists for every positive t and is unbounded as t tends to

∞. If µ is an even finite Borel measure on Sn−1 which is not concentrated
on a great subsphere of Sn−1, then there exists an origin symmetric convex
body K in Rn such that

cϕ(hK) dSK = dµ.

for some c ∈ (0,∞).

Let ϕ be as in Theorem 2 and define φ : [0,∞)→ [0,∞) by

φ(t) =
∫ t

0

1
ϕ(s)

ds, for t > 0, and φ(0) = lim
t→0+

φ(t).

The function φ is strictly increasing and continuously differentiable on (0,∞),
and φ′ > 0. Thus φ has an inverse φ−1 : φ([0,∞))→ [0,∞) which is contin-
uously differentiable on φ((0,∞)). Observe that limt→∞ φ(t) =∞.

Suppose that f ∈ C+(Sn−1) and K ∈ Kno . Recall that the function φ is
strictly increasing. There exists δ > 0 so that

φ(1)− tf(u) ∈ φ((1
2 , 2))

18



for all (t, u) ∈ (−δ, δ)×Sn−1. Define a function h̃ : (−δ, δ)×Sn−1 → (0,∞),
at (t, u), by

h̃(t, u) =
hK(u)

φ−1(φ(1)− tf(u))
. (39)

Clearly, h̃ is bounded from above and below by positive reals (dependent on
f and K). From (27) and (28) we therefore have that also ‖h̃t‖φ is bounded
from above and below by positive reals.

The following lemma follows directly from the definitions.

Lemma 6. The function h̃ is continuous and the partial derivative ∂h̃
∂t (t, u)

exists on (−δ, δ)× Sn−1 and is given by

∂h̃

∂t
(t, u) =

hK(u)f(u)(φ−1)′(φ(1)− tf(u))
[φ−1(φ(1)− tf(u))]2

. (40)

Moreover, it is continuous and bounded from above and below by positive
reals.

Lemma 7. The function t→ V (h̃t) is differentiable at 0.

Proof. By Lemma 6, the function h̃ is continuous. So in order to apply
Corollary 1 it remains to show that the limit

lim
t→0

h̃t(u)− h̃0(u)
t

(41)

exists uniformly on Sn−1. Let 0 < δ1 < δ. By the mean value theorem, for
every t ∈ [−δ1, δ1] we can find a t1 ∈ [−t, t] such that∣∣∣∣∣ h̃t(u)− h̃0(u)

t
− h̃′0(u)

∣∣∣∣∣ =

∣∣∣∣∣∂h̃∂t (t1, u)− ∂h̃

∂t
(0, u)

∣∣∣∣∣ .
By compactness, Lemma 6 shows that the partial derivative ∂h̃

∂t (t, u) is uni-
formly continuous on [−δ1, δ1] × Sn−1. Hence, the limit (41) does indeed
exist uniformly on Sn−1.

Lemma 8. The function t→ ‖h̃t‖φ is differentiable on (−δ, δ) with bounded
derivative.

Proof. As mentioned after the definition of h̃, there exist c1, c2 ∈ (0,∞) such
that

c1 < h̃t(u) < c2, for all (t, u) ∈ (−δ, δ)× Sn−1.
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Define a function G : (−δ, δ)× (c1, c2)→ R at (t, λ) by

G(t, λ) =
1
|µ|

∫
Sn−1

φ

(
h̃t
λ

)
dµ− φ(1).

Furthermore, we define, for fixed λ ∈ (c1, c2), a function h1 : (−δ, δ) ×
Sn−1 → (0,∞) by

h1(t, u) = h̃(t, u)/λ,

and, for fixed t ∈ (−δ, δ), a function h2 : (c1, c2)× Sn−1 → (0,∞) by

h2(λ, u) = h̃(t, u)/λ.

Clearly, the functions h1 and h2 are bounded from above and below by pos-
itive reals. Moreover, by Lemma 6, the derivatives ∂h1

∂t and ∂h2
∂λ exist, are

continuous, and bounded on their domains. Thus, by applying Lemma 2 to
h1 and h2 respectively, the partial derivatives ∂G/∂t, ∂G/∂λ exist. Since
∂(φ ◦h1)/∂t and ∂(φ ◦h2)/∂λ are continuous by Lemma 6, another applica-
tion of Lemma 2 shows that ∂G/∂t and ∂G/∂λ are in fact continuous. Since
we are allowed by Lemma 2 to interchange differentiation and integration,
and elementary calculation shows that ∂G/∂t and −∂G/∂λ are bounded
from above and below by positive reals. In particular, ∂G/∂λ is always
nonzero.

Let t ∈ (−δ, δ). For sufficiently small ε, Lemma 3 and the meanvalue
theorem give

0 = G(t+ ε, ‖h̃t+ε‖φ)−G(t, ‖h̃t‖φ)

= ε
∂G

∂t
(xε) + (‖h̃t+ε‖φ − ‖h̃t‖φ)

∂G

∂λ
(xε), (42)

where xε is a point on the line segment joining the points (t, ‖h̃t‖φ) and
(t+ ε, ‖h̃t+ε‖φ).

Note that the continuity of h̃ and compactness, h̃ is uniformly continuous
on [−δ1, δ1] × Sn−1 for arbitrary 0 < δ1 < δ. Thus the convergence in
limε→0 h̃t+ε = h̃t is uniform and hence, by Lemma 4, limε→0 ‖h̃t+ε‖φ =
‖h̃t‖φ. Hence xε converges to (t, ‖h̃t‖φ) as ε tends to zero.

Since, as shown above, the partial derivatives of G are continuous and
∂G/∂λ is always nonzero, we conclude from (42) that ‖h̃t‖φ is differentiable
with

d‖h̃t‖φ
dt

= −
[
∂G

∂t
(t, ‖h̃t‖φ)

]/[
∂G

∂λ
(t, ‖h̃t‖φ)

]
.

The fact that ∂G/∂t and −∂G/∂λ are bounded from above and below by
positive reals, finally shows that d‖h̃t‖φ/dt is bounded.
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Now, we are in a position to establish some differentiability properties
of functions involving h̃. Recall that

〈h̃t〉 =
h̃t

‖h̃t‖φ
.

Lemma 9. The functions

t 7−→
‖h̃t‖φ
V (h̃t)

1
n

and t 7−→
∫
Sn−1

φ(〈h̃t〉) dµ

are differentiable at 0 with derivatives

1

V (h̃0)
1
n

(
d

dt
‖h̃t‖φ

∣∣∣∣
t=0

−
‖h̃0‖φ
nV (h̃0)

∫
Sn−1

h̃0f

φ′(1)
dSK

)
(43)

and
1

‖h̃0‖φ

∫
Sn−1

1
ϕ(〈h̃0〉)

(
h̃0f

φ′(1)
− 〈h̃0〉

d

dt
‖h̃t‖φ

∣∣∣∣
t=0

)
dµ, (44)

respectively.

Proof. The differentiability at 0 of

t 7−→
‖h̃t‖φ
V (h̃t)

1
n

is an immediate consequence of Lemmas 7 and 8. Formula (43) for the
respective derivative follows directly from (40) and Corollary 1.

Since h̃ and ‖h̃t‖φ are bounded from below and above by positive reals,
so is 〈h̃t〉. From Lemmas 6 and 8 we infer that 〈h̃t〉 is differentiable with
respect to t. An elementary calculation shows that

∂〈h̃t〉
∂t

=
1
‖h̃t‖φ

(
dh̃t
dt
− 〈h̃t〉

d‖h̃t‖φ
dt

)
. (45)

Since ‖h̃t‖φ is bounded from below and above by positive reals and 〈h̃t〉,
dh̃t/dt, d‖h̃t‖φ/dt are bounded, we therefore conclude that ∂〈h̃t〉/∂t is bounded
as well. Lemma 2 proves the differentiability of

t 7−→
∫
Sn−1

φ(〈h̃t〉) dµ

at 0 and, together with (45) and (40), formula (44).
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We are now in a position to establish Theorem 2.

Proof. Define the functional Φ : C+
e (Sn−1)→ R for f ∈ C+

e (Sn−1), by

Φ(f) =
‖f‖φ
V (f)

1
n

.

Lemma 4, together with the fact that V : C+
e (Sn−1)→ R is continuous,

shows that Φ is continuous as well.
We are searching for a function at which Φ attains a minimum. As will

be seen, the search can be restricted to support functions of origin symmetric
convex bodies. Indeed, recall that the Aleksandrov bodyK associated with a
given function h ∈ C+

e (Sn−1) is origin symmetric and has a support function
hK which satisfies 0 < hK ≤ h. The fact that V (h) = V (hK) together with
(28) shows that Φ(hK) ≤ Φ(h).

Since Φ is positively homogeneous of degree 0, the search can be further
restricted to support functions of convex bodies with unit volume. Let c1

denote the value of Φ evaluated at the centered Euclidean ball with unit
volume. It follows that in order to find a minimum of the functional Φ
on C+

e (Sn−1), it is sufficient to search among the support functions of the
members of the set

F = {K ∈ Kne : Φ(hK) ≤ c1 and V (K) = 1}.

Let {Ki}, Ki ∈ F , be a minimizing sequence for Φ, i.e.

lim
i→∞

Φ(hKi) = inf{Φ(hK) : K ∈ F}.

We claim that the sequence {Ki} is bounded. For each i, let vi ∈ Sn−1 be
chosen such that for suitable ri > 0 the points rivi are elements of Ki with
maximal distance from the origin. Since each Ki is origin symmetric, the
segments with endpoints ±rivi are contained in Ki. From (3) and (4) we
deduce rihv̄i ≤ hKi . Hence (26), (28), and the fact that the Ki belong to F
imply

ri‖hv̄i‖φ = ‖rihv̄i‖φ ≤ ‖hKi‖φ = Φ(hKi) ≤ c1. (46)

Moreover, by Lemma 5, there exists a c2 ∈ (0,∞) such that

c2 ≤ ‖hv̄i‖φ (47)

for all i. Combining (46) and (47) we see that the ri are bounded from above
and hence the sequence {Ki} is bounded. Now Blaschke’s selection theorem
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guarantees the existence of a convergent subsequence of {Ki}, which we
also denote by {Ki}, with limi→∞Ki = K0. Clearly, the body K0 is again
an origin symmetric convex body. Since it has unit volume, it is in fact
contained in Kno . The continuity of Φ now implies that K0 ∈ F and thus
that

Φ(hK0) ≤ Φ(f)

for every f ∈ C+
e (Sn−1).

For fixed f ∈ C+
e (Sn−1), let h̃ : (−δ, δ)×Sn−1 → (0,∞) be defined as in

(39), i.e.

h̃(t, u) =
hK0(u)

φ−1(φ(1)− tf(u))
.

Lemma 9 shows that the function t 7→ Φ ◦ h̃t is differentiable at 0. Since hK0

is a minimizer of the functional Φ and h̃0 = hK0 we have

d

dt
(Φ ◦ h̃t)

∣∣∣∣
t=0

= 0.

The expression for the above derivative given in (43) implies

d

dt
‖h̃t‖φ

∣∣∣∣
t=0

=
‖h̃0‖φ
nV (h̃0)

∫
Sn−1

h̃0f

φ′(1)
dSK0 . (48)

For each t such that |t| < δ, we have from (32)

1
|µ|

∫
Sn−1

φ ◦ 〈h̃t〉 dµ = φ(1).

If we differentiate this equation at t = 0 and use (44) then we get∫
Sn−1

1
ϕ ◦ 〈h̃0〉

(
h̃0f

φ′(1)
− 〈h̃0〉

d

dt
‖h̃t‖φ

∣∣∣∣
t=0

)
dµ = 0.

By inserting (48) in the above equation and using (12) as well as the fact
that h̃0 = hK0 we arrive at

1
nV (K0)

∫
Sn−1

hK0f dSK0

∫
Sn−1

hK0

ϕ ◦ 〈h̃0〉
dµ =

∫
Sn−1

hK0f

ϕ ◦ 〈h̃0〉
dµ.

Note that by (3), (6), and the homogeneity of volume (of degree n), this
equation remains unchanged if we replaceK0 by a dilate ofK0. In particular,
if we choose a dilate K1 of K0 such that∫

Sn−1

hK1

ϕ ◦ 〈h̃0〉
dµ = n,
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then we obtain

1
V (K1)

∫
Sn−1

hK1f dSK1 =
∫
Sn−1

hK1f

ϕ ◦ 〈h̃0〉
dµ.

Since this holds for all positive even continuous f on Sn−1, it holds for all
even continuous f on Sn−1, and hence

1
V (K1)

dSK1 =
1

ϕ ◦ 〈h̃0〉
dµ.

Note that by the definition of 〈 · 〉, the fact that h̃0 = hK0 , (3), and (26) we
have

〈h̃0〉 =
h̃0

‖h̃0‖φ
=

hK0

‖hK0‖φ
=

hK1

‖hK1‖φ
,

and thus
1

V (K1)
ϕ

(
hK1

‖hK1‖φ

)
dSK1 = dµ.

Finally, set K2 = ‖hK1‖−1
φ K1. Then (6) and the homogeneity of volume

yield
cϕ(hK2) dSK2 = dµ

where c = (‖hK1‖φV (K2))−1.

As a consequence of Theorem 2, by taking ϕ(t) = t1−p for p > 0, we
obtain the solution to the even Lp Minkowski problem for positive p 6= n.

Corollary 2. If µ is an even finite Borel measure on the sphere Sn−1 which
is not concentrated on a great subsphere of Sn−1, then for each 0 < p 6= n
there exists an origin symmetric convex body K in Rn such that

h1−p
K dSK = dµ.
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