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Abstract. It is shown that the classical John ellipsoid, the Petty ellipsoid and a recently
discovered ‘dual’ of the Legendre ellipsoid are all special cases (p =∞, p = 1, and p = 2)

of a family of Lp ellipsoids which can be associated with a fixed convex body. This insight

allows for a unified view of, alternate approaches to, and extensions of some basic results
in convex geometry.

Introduction

Two old questions in convex geometry ask: (1) What is the largest (in volume)
ellipsoid that can be squeezed inside a fixed convex body? (2) When SL(n) transfor-
mations act on a fixed convex body in Rn, which transformation yields the image with
the smallest surface area? One of the aims of this article is to demonstrate that these
apparently unrelated questions are special cases of the same problem – that of min-
imizing total Lp-curvature. Problem (1) turns out to be the L∞ case while Problem
(2) is the L1 case.

An often used fact in both convex and Banach space geometry is that associated
with each convex body K is a unique ellipsoid JK of maximal volume contained in
K. The ellipsoid is called the John ellipsoid (or Löwner-John ellipsoid) of K and the
center of this ellipsoid is called the John point of the body K. The John ellipsoid is
extremely useful, see, for example, [2] and [40] for applications.

Two important results concerning the John ellipsoid are John’s inclusion and Ball’s
volume-ratio inequality. John’s inclusion states that if K is an origin-symmetric convex
body in Rn, then

K ⊆
√

n JK. (0.1)

Among a slew of applications, John’s inclusion gives the best upper bound,
√

n, for the
Banach-Mazur distance of an n-dimensional normed space to n-dimensional Euclidean
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space. Ball’s volume-ratio inequality is the following: If K is an origin-symmetric
convex body in Rn, then

|K|/| JK| ≤ 2n/ωn, (0.2)

with equality if and only if K is a parallelotope. Here |·| denotes n-dimensional volume
and ωn = πn/2Γ(1 + n/2) denotes the volume of the unit ball, B, in Rn. The fact
that there is equality in (0.2) only for parallelotopes was only recently established by
Barthe [4].

The authors recently introduced in [31] a new ellipsoid Γ−2K associated with each
convex body K that contains the origin in its interior. The volume of the ellipsoid
Γ−2K is dominated by the volume of K. It was proved in [31] that for the new ellipsoid
there is an inclusion identical to John’s inclusion: If K is an origin-symmetric convex
body in Rn, then

K ⊆
√

n Γ−2K. (0.3)

It was also shown in [31] that for the new ellipsoid Ball’s volume-ratio inequality (0.2)
continues to hold: If K is an origin-symmetric convex body in Rn, then

|K|/|Γ−2K| ≤ 2n/ωn, (0.4)

with equality if and only if K is a parallelotope.
Unlike the John ellipsoid, for the new ellipsoid there is an analytic formulation. If

x ∈ Rn,

‖x‖2
Γ−2K =

1
|K|

∫
Sn−1

|x · u|2dS2(K, u) (0.5)

where S2(K, ·) is the quadratic surface are measure of K (as defined in Section 1).
In this paper, we show that associated with each convex body K, that contains the

origin in its interior, is a family of ellipsoids EpK, the Lp John ellipsoids of K. For
origin-symmetric K, the ellipsoid E∞K turns out to be the classical John ellipsoid. In
the L2 case, E2K is the new ellipsoid Γ−2K. The ellipsoid E1K is the Petty ellipsoid
of K. The volume-normalized Petty ellipsoid is obtained by minimizing the surface
area of K under SL(n) transformations of K. See Petty [39] and also Giannopoulos
and Papadimitrakis [13] and [29]. (Petty [39] contains references to work done on this
minimization problem in the first half of the Twentieth Century.)

In Section 4, we shall present an Lp version of John’s inclusion. This yields an
alternate approach to obtaining Lewis’ upper bound for the Banach-Mazur distance
between n-dimensional subspaces of an Lp space and Euclidean n-space.

In Section 5, we show that Ball’s volume-ratio inequality holds not only for the
John ellipsoid, but for all the Lp John ellipsoids (for all p ∈ (0,∞]).

Lewis [22] showed that associated with each n-dimensional subspace of Lp is an
important ellipsoid. These Lewis ellipsoids have become basic tools in Banach space
geometry. The view taken in this paper is very different from that of Lewis: We
associate a family of ellipsoids with one n-dimensional Banach space. A simple way
to observe the different results emerging from these different approaches is to consider
the L2 case. Here the Lewis ellipsoid is trivial. By contrast, in our approach it is
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precisely the L2 case that yields one of the most important of the Lp John ellipsoid
– the recently discovered ellipsoid that is dual to the Legendre ellipsoid of classical
mechanics. See [31], [32], and Ludwig [25].

Much effort has been expended in obtaining the results concerning Lp John ellipsoids
for all p > 0. Many of the arguments could have been greatly simplified had these
results only been desired for p ≥ 1.

There is a bit of overlap between our work and that of Bastero and Romance
[5]. However, [5] is mainly concerned with associated ellipsoids in the dual Brunn-
Minkowski theory (see e.g. [10] for a discussion of the relationship between the classical
and dual Brunn-Minkowski theories). Ellipsoids associated with convex bodies are also
studied in interesting recent work of Klartag [20].

Acknowledgement The authors are grateful to the referee for many suggested
improvements and for the thoughtful and careful reading given to the original draft of
this paper.

1. Minimizing total Lp-curvature

For quick reference we recall some basic results from the Brunn-Minkowski theory.
Good references are Gardner [G], Leichtweiß [21], Schneider [44], and Thompson [49].

A convex body in Euclidean n-dimensional space, Rn, is a compact convex subset of
Rn with non-empty interior. For a convex body Q let hQ : Rn → R denote its support
function; i.e., for x ∈ Rn, we have hQ(x) = max{x·y : y ∈ K}, where x·y denotes the
standard inner product of x and y in Rn. If φ ∈ GL(n), then for the support function
of the image φK = {φx : x ∈ K}, we obviously have

hφQ(x) = hQ(φtx), (1.1)

where φt denotes the transpose of φ. If Q contains the origin in its interior, then we
will use Q∗ to denote the polar of Q; i.e.,

Q∗ = {x ∈ Rn : x·y ≤ 1 for all y ∈ Q}.

Obviously, for φ ∈ GL(n),
(φQ)∗ = φ−tQ∗, (1.2)

where φ−t denotes the inverse of the transpose of φ.
The radial function ρQ : Rn \{0} → R associated with a set Q ⊂ Rn that is compact

and star-shaped is defined for x 6= 0 by ρQ(x) = max{λ ≥ 0: λx ∈ Q}. If ρQ is positive
and continuous, Q is called a star body. Obviously, for x 6= 0 and φ ∈ SL(n),

ρφQ(x) = ρQ(φ−1x). (1.3)

It is easily seen that if Q is a convex body in Rn, then ρQ∗ = 1/hQ and if in addition
Q is origin symmetric then

ρQ(u) = min{hQ(v)/|u · v| : v ∈ Sn−1}, (1.4)
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for all u ∈ Sn−1.
Throughout, the letter E will be used exclusively to denote an origin-symmetric

ellipsoid.
Recall that the classical surface area measure, S(K, ·), of a convex body, K, is a

Borel measure on the unit sphere Sn−1 defined so that

lim
ε→0+

|K + εQ| − |K|
ε

=
∫

Sn−1
h(Q, u) dS(K, u), (1.5)

hold for each convex body Q. Here | · | denotes n-dimensional volume and K + εQ =
{x + εy : x ∈ K and y ∈ Q} is the standard Minkowski sum of the body K and
the dilate εQ = {εx : x ∈ Q}. If the measure S(K, · ) is absolutely continuous
with respect to standard Lebesgue measure, S, on Sn−1, then it is said that K has
a curvature function, f(K, · ) : Sn−1 → R, defined as the Radon-Nikodym derivative
f(K, · ) = dS(K, · )/dS. From definition (1.5) it follows that if K, L are convex
bodies and φ ∈ SL(n), then∫

Sn−1
hφL(u) dS(φK, u) =

∫
Sn−1

hL(u) dS(K, u). (1.6)

If the body K contains the origin in its interior, then for each real p, we can define
dSp(K, · ), the Lp-surface area measure of K by:

dSp(K, · ) = h1−p
K dS(K, · ). (1.7)

If λ > 0, then for the dilate λK, we know hλK = λhK and S(λK, · ) = λn−1S(K, · ).
It follows immediately from (1.7) that

Sp(λK, · ) = λn−pSp(K, · ). (1.8)

If in addition to containing the origin in its interior, the body K has a curvature
function, then fp(K, · ) : Sn−1 → R, the Lp-curvature function of K is defined by:

fp(K, · ) = h1−p
K f(K, · ).

Since its introduction in the mid 90’s, Lp curvature (and the functionals it gives rise
to) have attracted increased interest (see, e.g., Campi and Gronchi [7,8], Chou and
Wang [9], Gardner [11], Guan and Lin [15], Hug and Schneider [18], Klain [19], Ludwig
[24,25,26], Meyer and Werner [38], Ryabogin and Zvavitch [43], Schütt and Werner [45,
46], Stancu [47, 48], Umanskiy [50], Werner [51], and also [17], [27,28,29], [33,34,35]
and [30].)

In this paper we will be interested in minimizing total Lp-curvature of a body
under SL(n)-transformations of the body: Given a smooth convex body K in Rn, that
contains the origin in its interior, and a fixed real p > 0, find

min
φ∈SL(n)

∫
Sn−1

fp(φK, u) dS(u).
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That this minimum is actually attained is easy to see (and will be shown in Section
2). A φp ∈ SL(n) at which this minimum is attained defines an ellipsoid ĒpK which
φp maps into the unit ball, B; i.e., ĒpK = φ−1

p B. This ellipsoid is unique and will be
called the volume-normalized Lp John ellipsoid of K. For p = ∞, define

Ē∞ K = lim
p→∞

ĒpK.

It will be helpful to introduce some additional notation: For x ∈ Rn, let 〈x〉 = x/|x|,
whenever x 6= 0. We shall use e1, . . . , en to denote the canonical basis for Rn.

Definition 1.1. Given a measure dµ(u) on Sn−1, a real p > 0, and a φ ∈ GL(n),
define the measure dµ(p)(φu) on Sn−1 by∫

Sn−1
f(u) dµ(p)(φu) =

∫
Sn−1

|φ−1u|pf(〈φ−1u〉) dµ(u),

for each f ∈ C(Sn−1).

First note that for each body K and each φ ∈ SL(n) for the classical surface area
measure we have:

dS(φK, u) = dS(1)(K, φtu). (1.9)

To see this note that for each convex body Q it follows from Definition 1.1, the homo-
geneity of hQ, (1.1) and (1.6) that∫

Sn−1
hQ(u) dS(1)(K, φtu) =

∫
Sn−1

|φ−tu|hQ(〈φ−tu〉) dS(K, u),

=
∫

Sn−1
hQ(φ−tu) dS(K, u)

=
∫

Sn−1
hφ−1Q(u) dS(K, u)

=
∫

Sn−1
hQ(u) dS(φK, u).

As is the case above, we shall make use of the fact that if two Borel measures on
Sn−1 are equal when integrated against support functions of convex bodies, then the
measures are identical. This follows from the fact that the differences of support
functions are dense in C(Sn−1), with the sup norm.

Proposition 1.2. If K is a convex body that contains the origin in its interior and
real p > 0, then for φ ∈ SL(n),

dSp(φK, u) = dS(p)
p (K, φtu). (1.10)
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Proof. If f ∈ C(Sn−1), then from definition (1.7), (1.1), (1.9), Definition 1.1, the
homogeneity of hK , definition (1.7) again, and Definition 1.1 again, we have:∫

Sn−1
f(u)dSp(φK, u) =

∫
Sn−1

f(u)h1−p
K (φtu) dS(φK, u)

=
∫

Sn−1
f(u)h1−p

K (φtu) dS(1)(K, φtu)

=
∫

Sn−1
|φ−tu| f(〈φ−tu〉)h1−p

K (φt〈φ−tu〉) dS(K, u)

=
∫

Sn−1
|φ−tu|pf(〈φ−tu〉) dSp(K, u)

=
∫

Sn−1
f(u) dS(p)

p (K, φtu). �

If K, L are convex bodies in Rn that contain the origin in their interiors, then for
real p > 0 define the Lp-mixed volume of the bodies by:

Vp(K, L) =
1
n

∫
Sn−1

hp
L(u) dSp(K, u). (1.11)

¿From (1.11), (1.7), and the weak continuity of the classical surface area measures, it
is easily seen that Vp is continuous in both arguments.

Suppose K, L are convex bodies that contain the origin in their interiors and real
λ, p > 0. From definition (1.11), (1.7) and the fact that hλL = λhL, we have

Vp(K, λL) = λpVp(K, L) and Vp(λK,L) = λn−pVp(K, L). (1.12)

An immediate consequence of Proposition 1.2 is:

Corollary 1.3. If K, L are convex bodies that contain the origin in their interiors,
real p > 0, and φ ∈ SL(n), then

Vp(φK,L) = Vp(K, φ−1L).

Proof. From definition (1.11), Proposition 1.2, Definition 1.1, the homogeneity of the
support function, (1.1), and finally definition (1.11) again, we have

Vp(φK,L) =
∫

Sn−1
hp

L(u) dSp(φK, u)

=
∫

Sn−1
|φ−tu|php

L(〈φ−tu〉) dSp(K, u)

= Vp(K, φ−1L). �

Corollary 1.3, together with (1.11) and (1.12), shows that for φ ∈ GL(n),

Vp(φK, φL) = |φ|Vp(K, L), (1.13)

where |φ| denotes the absolute value of the determinant of φ.
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¿From (1.11) and Corollary 1.3, it follows that the original problem of minimizing
total Lp-curvature under SL(n)-transformations can be rewritten as:

min
φ∈SL(n)

∫
Sn−1

dSp(φK, u) = min
φ∈SL(n)

Vp(φK, B)

= min
φ∈SL(n)

Vp(K, φ−1B)

= min
|E|=ωn

Vp(K, E),

where the last minimum is taken over all origin-centered ellipsoids whose volume is
equal to that of the unit ball, B.

We shall make frequent use of the following formulation of Jensen’s inequality: On
a probability space the Lp means of a continuous function are strictly increasing in
p, unless the function is constant. We shall also require the well-known fact that, as
p →∞, the Lp means of the continuous function converge to its sup-norm.

In order to facilitate the formulation of our problem for the case p = ∞ it will be
helpful to introduce a volume-normalized version of Lp mixed volumes. If K, L are
convex bodies that contain the origin in their interiors, then for each real p > 0 define

V̄p(K, L) =
(

Vp(K, L)
|K|

) 1
p

=
(

1
n|K|

∫
Sn−1

[
hL(u)
hK(u)

)p

hK(u) dS(K, u)
] 1

p

, (1.14)

and for p = ∞ define

V̄∞(K, L) = max{hL(u)/hK(u) : u ∈ supp S(K, · )}. (1.15)

Note that 1
nhK dS(K, · )/|K| is a probability measure on suppS(K, · ). Unless hL/hK

is constant on suppS(K, · ), it follows from (1.14) and Jensen’s inequality that

V̄p(K, L) < V̄q(K, L), (1.16)

for 0 < p < q ≤ ∞, and
lim

p→∞
V̄p(K, L) = V̄∞(K, L).

We shall require the fact that, for po ∈ (0,∞],

lim
p→po

V̄p(K, L) = V̄po(K, L). (1.17)

¿From (1.12) and (1.14) it follows immediately that for λ > 0 and p ∈ (0,∞],

V̄p(λK,L) = λ−1V̄p(K, L) and V̄p(K, λL) = λV̄p(K, L). (1.18)
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We shall need the fact that for φ ∈ GL(n) and all p ∈ (0,∞],

V̄p(φK, φL) = V̄p(K, L). (1.19)

This follows immediately from (1.14) and (1.13) for real p > 0. But (1.19) for real
p > 0 together with (1.17) shows that it in fact (1.19) holds for all p ∈ (0,∞].

Finally, we will require the fact that

V̄∞(K, L) ≤ 1 if and only if L ⊆ K. (1.20)

This is a direct consequence of definition (1.15) and the fact that a convex body Q is
the intersection of its supporting half spaces whose outer unit normals lie in the set
supp S(Q, · ) ⊆ Sn−1.

In order to establish the continuity of the Lp John ellipsoids in (Section 3) we shall
require the crude estimate of the next Lemma. Throughout we shall use |·|∞ to denote
the sup norm on the space of continuous functions defined on suppS(K, ·) ⊆ Sn−1.

Lemma 1.4. If K, L, Lo are convex bodies in Rn that contain the origin in their
interiors, then

|V̄p(K, L)− V̄p(K, Lo)| ≤
|hL − hLo

|∞
minu∈Sn−1 hK(u)

, (1.21)

for all p ∈ [1,∞].

Proof. First suppose p < ∞. From definition (1.14) together with the Minkowski
inequality (i.e., the triangle inequality for Lp norms) we have:

|V̄p(K, L)− V̄p(K, Lo)| ≤
[

1
n|K|

∫
Sn−1

∣∣∣∣ hL(u)
hK(u)

− hLo
(u)

hK(u)

∣∣∣∣p hK(u) dS(K, u)
]1/p

≤
[

1
n|K|

∫
Sn−1

1
hK(u)p

hK(u) dS(K, u)
]1/p

|hL − hLo |∞

≤ |hL − hLo |∞
minu∈Sn−1 hK(u)

.

Taking the limit as p → ∞, and using (1.17) shows that (1.21) holds for p = ∞ as
well.

2. Lp John ellipsoids

Throughout, we assume that p ∈ (0,∞], and K is a convex body that contains the
origin in its interior. As was the case above, E will always denote an origin-centered
ellipsoid. We formulate our main problem in two equivalent ways.
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Optimization Problems. Given a convex body K in Rn that contains the origin in
its interior, find an ellipsoid, amongst all origin-centered ellipsoids, which solves the
following constrained maximization problem:

max(|E|/ωn)1/n subject to V̄p(K, E) ≤ 1. (Sp)

A maximal ellipsoid will be called an Sp solution for K. The dual problem is:

min V̄p(K, E) subject to (|E|/ωn)1/n ≥ 1. (S̄p)

A minimal ellipsoid will be called an S̄p solution for K.

The solutions to Sp and S̄p differ by only a scale factor.

Lemma 2.1. Suppose 0 < p ≤ ∞ and K is a convex body in Rn that contains the
origin in its interior. If E is an ellipsoid centered at the origin that is an S̄p solution
for K, then (

|K|
Vp(K, E)

)1/p

E (2.1a)

is an Sp solution for K. If E′ is an ellipsoid centered at the origin that is an Sp

solution for K, then
(ωn/|E′|)1/nE′ (2.1b)

is an S̄p solution for K.

Given an ellipsoid E, with diameter diam(E), there exists a vE ∈ Sn−1 such that
diam(E)|vE · u|/2 ≤ hE(u) for all u ∈ Sn−1. From this, definitions (1.11) and (1.14),
and the constraint in (Sp) we see that

[diam(E)/2]p min
v∈Sn−1

1
n

∫
Sn−1

|v · u|pdSp(K, u) ≤ Vp(K, E) ≤ |K|.

Thus, the diameters of a maximizing sequence of ellipsoids for Problem (Sp) are uni-
formly bounded and the existence of a solution for (Sp) is guaranteed by the Blaschke
Selection Theorem. Lemma 2.1 now guarantees a solution to (S̄p) as well.

Theorem 2.2. Suppose real p > 0 and K is a convex body in Rn that contains the
origin in its interior. Then Sp as well as S̄p has a unique solution. Moreover, an
ellipsoid E solves S̄p if and only if it satisfies

Vp(K, E)h2
E∗(x) =

∫
Sn−1

|x·v|2hp−2
E (v) dSp(K, v), for all x ∈ Rn; (2.2a)

and an ellipsoid E solves Sp if and only if it satisfies

|K|h2
E∗(x) =

∫
Sn−1

|x·v|2hp−2
E (v) dSp(K, v), for all x ∈ Rn. (2.2b)

By Lemma 2.1, only the assertions about an S̄p solution require a proof. The
existence of a solution has already been established, and only the uniqueness and the
characterization statements require proof.

In order to establish Theorem 2.2, we first prove a lemma that shows that, without
loss of generality, we may assume that the ellipsoid E is the unit ball, B, in Rn.
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Lemma 2.3. Suppose real p > 0 and K is a convex body in Rn that contains the
origin in its interior. If φ ∈ GL(n), then

Vp(φ−1K, B)|x|2 =
∫

Sn−1
|x·v|2dSp(φ−1K, v), for all x ∈ Rn, (2.3a)

if and only if

Vp(K, φB)h2
(φB)∗(x) =

∫
Sn−1

|x·v|2hp−2
φB (v) dSp(K, v), for all x ∈ Rn. (2.3b)

Proof. In light of (1.12), it suffices to prove this for φ ∈ SL(n). First note that

Vp(K, φB)h2
φ−tB∗(x) =

∫
Sn−1

|x·v|2hp−2
φB (v) dSp(K, v), for all x ∈ Rn,

is by (1.1) and Corollary 1.3 equivalent to

Vp(φ−1K, B)h2
B∗(φ−1x) =

∫
Sn−1

|x·v|2hp−2
B (φtv) dSp(K, v), for all x ∈ Rn.

But using Definition 1.1 and Proposition 1.2 we see that this is equivalent to: For all
x ∈ Rn,

Vp(φ−1K, B)h2
B∗(x) =

∫
Sn−1

|φx·v|2hp−2
B (φtv) dSp(K, v)

=
∫

Sn−1
|x·φtv|2|φtv|p−2 dSp(K, v)

=
∫

Sn−1
|x·〈φtv〉|2|φtv|p dSp(K, v)

=
∫

Sn−1
|x·v|2 dS(p)

p (K, φ−tv),

which by Proposition 1.2 is in turn equivalent to

Vp(φ−1K, B)|x|2 =
∫

Sn−1
|x·v|2dSp(φ−1K, v), for all x ∈ Rn. �

Proof (of Theorem 2.2). We first show that if E is a S̄p solution for K, then

Vp(K, E)h2
E∗(x) =

∫
Sn−1

|x·v|2hp−2
E (v) dSp(K, v), for all x ∈ Rn.

Corollary 1.3 and Lemma 2.3 show that we may assume the E = B.
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Suppose l ∈ SL(n). Choose ε0 > 0 sufficiently small so that for all ε ∈ (−ε0, ε0)
when εl is added to the identity matrix 1 ∈ SL(n) the resulting matrix is invertible.
For ε ∈ (−ε0, ε0) define lε ∈ SL(n) by

lε = |1 + εl|−1/n(1 + εl).

Since | lε| = 1, the ellipsoid Eε = ltεB clearly has volume ωn. The support function of
Eε is given by hEε(u) = hltεB(u) = | lεu|. The fact that B is an S̄p solution, implies
that Vp(K, E0) ≤ Vp(K, Eε), for all ε, and hence using (1.11) we have:

d

dε

∣∣∣∣
ε=0

∫
Sn−1

| lεu|pdSp(K, u) = 0,

or equivalently,

0 =
d

dε

∣∣∣∣
ε=0

∫
Sn−1

|1 + εl|−p/n(u·u + 2ε u·lu + ε2lu·lu)p/2dSp(K, u). (2.3.1)

Since d
dε

∣∣
ε=0

|1 + εl| = trace(l) and since the integrand depends smoothly on ε (for
small ε), from (2.3.1) we have∫

Sn−1
(u · lu)dSp(K, u) = Vp(K, B) trace(l).

Choosing an appropriate l for each i, j ∈ {1, . . . , n} gives∫
Sn−1

(u·ei)(u·ej)dSp(K, u) = Vp(K, B)δij ,

which in turn gives

Vp(K, E)|x|2 =
∫

Sn−1
|x·v|2dSp(K, v), for all x ∈ Rn,

as desired.

Conversely, we suppose that

Vp(K, B)h2
B∗(x) =

∫
Sn−1

|x·v|2hp−2
B (v) dSp(K, v), for all x ∈ Rn, (2.3.2)

and shall prove that if |E| = ωn,

Vp(K, E) ≥ Vp(K, B),

with equality if and only if E = B. Equivalently, we shall prove that if P is a positive
definite symmetric matrix with |P | = 1, then[

1
nVp(K,B)

∫
Sn−1

|Pu|pdSp(K, u)
] 1

p

≥ 1, (2.3.3)
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with equality if and only if |Pu| = 1 for all u ∈ Sn−1.
In order to establish (2.3.3) we shall prove:[

1
nVp(K,B)

∫
Sn−1

|Pu|pdSp(K, u)
] 1

p

≥ exp
[

1
nVp(K,B)

∫
Sn−1

log |Pu| dSp(K, u)
]
≥ 1.

The left inequality is a direct consequence of Jensen’s inequality with equality possible
here if and only if there exists a c > 0 such that |Pu| = c for all u ∈ suppS(K, · ).

Write P as P = OtDO, where D = diag(λ1, . . . , λn) is a diagonal matrix with
eigenvalues λ1, . . . , λn and O is orthogonal. To establish our inequality we need show:∫

Sn−1
log |Pu| dSp(K, u) ≥ 0. (2.3.4)

First note that from (2.3.2) and Lemma 2.3 we get

Vp(OK,B)|x|2 =
∫

Sn−1
|x·v|2dSp(OK, v), for all x ∈ Rn. (2.3.5)

To get (2.3.4) note that from the fact that O is orthogonal, Definition 1.1, Proposition
1.2, the fact that D is diagonal, the concavity of the log function, and (2.3.5) we have∫

Sn−1
log |Pu| dSp(K, u) =

∫
Sn−1

log |OtDOu| dSp(K, u)

=
∫

Sn−1
log |Du| dSp(OK,u)

≥ 1
2

∫
Sn−1

(u2
1 log λ2

1 + · · ·+ u2
n log λ2

n)dSp(OK,u)

= Vp(OK,B)
n∑

i=1

log λi

= 0,

where we have abbreviated u · ei by ui.
Note that from the strict concavity of the log function it follows that equality in

(2.3.4) is possible only if ui1 · · ·uiN
6= 0 implies λi1 = · · · = λiN

, for u ∈ supp S(OK, · ).
Thus, |Du| = λi when ui 6= 0, for u ∈ supp S(OK, · ). Now equality in (2.3.3)
would also force |Pu| = c for all u ∈ suppS(K, · ), or equivalently |Du| = c for all
u ∈ suppS(OK, · ). Since supp S(OK, · ) is not contained in an (n− 1)-dimensional
subspace of Rn, we have λi = c for all i. This together with the fact that λ1 · · ·λn = 1
shows that equality in (2.3.3) would imply D = I and hence P = I. �

Theorem 2.2 shows that problem (Sp) has a unique solution when 0 < p < ∞.
Now consider the case p = ∞ of (Sp). With the aid of (1.20), we may rephrase (S∞)
as: Amongst all origin-centered ellipsoids, find an ellipsoid which solves the following
constrained maximization problem:

max(|E|/ωn)1/n subject to E ⊆ K. (S∞)

It is easily verified that a maximizing ellipsoid in (S∞) is unique (see e.g. Giannopoulos
and Milman [12]).
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Definition 2.4. Suppose K is a convex body that contains the origin in its interior
and 0 < p ≤ ∞. Amongst all origin-centered ellipsoids, the unique ellipsoid that solves
the constrained maximization problem

max
E

|E| subject to V̄p(K, E) ≤ 1.

will be called the Lp John ellipsoid of K and will be denoted by EpK. Amongst all
origin-centered ellipsoids, the unique ellipsoid that solves the constrained minimization
problem

min
E

V̄p(K, E) subject to |E| = ωn,

will be called the normalized Lp John ellipsoid of K and will be denoted by ĒpK.

¿From (1.18) and (1.20) we immediately obtain:

Lemma 2.5. If K is a convex body in Rn that contains the origin in its interior, and
0 < p ≤ ∞, then for φ ∈ GL(n),

EpφK = φEpK.

Obviously, EpB = B, and from Lemma 2.5 we see that if E is an ellipsoid that is
centered at the origin, then

EpE = E. (2.4)

Note that if the John point of K is at the origin (e.g., if K is origin-symmetric) then
E∞K is the classical John ellipsoid of K.

¿From (0.5) and Theorem 2.2, we immediately obtain:

Lemma 2.6. If K is a convex body that contains the origin in its interior, then

E2K = Γ−2K.

3. Continuity

In this section we show that the family of Lp John ellipsoids associated with a
convex body is continuous in p ∈ (0,∞].

Throughout this section K will be assumed to be a fixed convex body in Rn that
contains the origin in its interior. For u ∈ Sn−1 let ū = {λu : −1 ≤ λ ≤ 1}, and
let u⊥ denote the codimension 1 subspace of Rn that is orthogonal to u. Write K|u⊥
for the image of the orthogonal projection of K onto u⊥, and voln−1(K|u⊥) for its
(n− 1)-dimensional volume.

Lemma 3.1. Suppose 0 < p ≤ ∞. If aB ⊆ K ⊆ bB, for a, b > 0, then ĒpK ⊆ cB,

for c = (nb/a)max{1,1/p}.
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Proof. Suppose u ∈ Sn−1. By writing |K| as an integral over K|u⊥ we see immediately
that |K| is bounded from above by diam(K) voln−1(K|u⊥). Thus

voln−1(K|u⊥)
|K|

≥ 1
2b

. (3.1.1)

Let Rpūp denote the longest line segment contained in ĒpK. Since Rpūp ⊂ ĒpK,

Rp|up ·u| ≤ hĒpK(u), (3.1.2)

for all u ∈ Sn−1.
¿From the Definition 2.6, (1.14) and (3.1.2), we have

V̄p(K, B) ≥ V̄p(K, ĒpK) ≥
[

1
n|K|

∫
Sn−1

(
Rp|up ·u|
hK(u)

)p

hK(u) dS(K, u)
]1/p

. (3.1.3)

Jensen’s inequality and (3.1.3) show that when p ≥ 1,

V̄p(K, B)/Rp ≥
1

n|K|

∫
Sn−1

|up ·u| dS(K, u) =
2 voln−1(K|u⊥p )

n|K|
. (3.1.4)

When 0 < p < 1, from aB ⊆ K, we see that (3.1.3) gives

V̄p(K, B)/Rp ≥
[

a1−p

n|K|

∫
Sn−1

|up ·u|p dS(K, u)
]1/p

≥
[

a1−p

n|K|

∫
Sn−1

|up ·u| dS(K, u)
]1/p

=

[
2a1−p voln−1(K|u⊥p )

n|K|

]1/p

. (3.1.5)

Now (3.1.4) and (3.1.5), together with (3.1.1), give

V̄p(K, B) ≥ Rp

a

( a

nb

)max{ 1
p ,1}

. (3.1.6)

To complete the proof we observe that by Jensen’s inequality and (1.15)

V̄p(K, B) ≤ V̄∞(K, B) = max{1/hK(u) : u ∈ suppS(K, · )} ≤ 1/a.

This and (3.1.6) yield the desired result. �
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Given a δ > 0, we see by Lemma 3.1 that there exists RK,δ > 0 such the compact
set of ellipsoids,

EK,δ = {E : |E| = ωn and E ⊆ RK,δB},
contains ĒpK, and is independent of p ∈ (δ,∞]. Thus, in order to establish the conti-
nuity of ĒpK in p ∈ (δ,∞] we may restrict the domain of V̄p(K, ·) to EK,δ.

Lemma 3.2. If po ∈ (δ,∞], then the limit

lim
p→po

V̄p(K, E) = V̄po
(K, E),

is uniform for E ∈ EK,δ.

Proof. Since Vp(K, E) is a continuous function (p, E) ∈ (δ, 1]×EK,δ, and EK,δ is com-
pact, the functions Vp(K, ·) with p ∈ (δ, 1] form an equicontinuous family of functions
on EK,δ. On the other hand, Lemma 1.4 shows that the V̄p(K, ·), p ∈ [1,∞], also form
an equicontinuous family of functions on EK,δ. The lemma therefore follows by the
Arzela-Ascoli theorem. �

Recall that for each p, the ellipsoid ĒpK is the unique ellipsoid that satisfies:

V̄p(K, ĒpK) = min
|E|=ωn

V̄p(K, E).

Lemma 3.3. If po ∈ (δ,∞], then

lim
p→po

V̄p(K, ĒpK) = V̄po
(K, Ēpo

K).

Proof. Using the definition Ēp, Lemma 3.2, (1.17), and again the definition of Ēp, we
have

lim
p→po

V̄p(K, ĒpK) = lim
p→po

min
|E|=ωn

V̄p(K, E)

= min
|E|=ωn

lim
p→po

V̄p(K, E)

= min
|E|=ωn

V̄po
(K, E)

= V̄po(K, ĒpoK). �

Lemma 3.4. If po ∈ (δ,∞], then

lim
p→po

ĒpK = Ēpo
K.

Proof. We argue by contradiction and assume the conclusion to be false. Lemma 3.1,
the Blaschke selection theorem, and our assumption, give a sequence pi → po, as
i → ∞, such that limi→∞ Ēpi

K = E′ 6= Ēpo
K. Since the solution to Problem (S̄p) is

unique, and by the uniform convergence established in Lemma 3.2, we get

V̄po
(K, Ēpo

K) < V̄po
(K, E′)

= lim
i→∞

V̄po
(K, Ēpi

K)

= lim
i→∞

V̄pi
(K, Ēpi

K).

This contradicts to Lemma 3.3. �
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Since δ > 0 was arbitrary and since, by Lemma 2.1, EpK = V̄p(K, ĒpK)−1 ĒpK,
the above gives:

Theorem 3.5. Suppose K is a convex body in Rn that contains the origin in its
interior. If po ∈ (0,∞], then

lim
p→po

EpK = Epo
K.

4. Generalizations of John’s inclusion

John’s inclusion states that if K is an origin-symmetric convex body in Rn, then

E∞K ⊆ K ⊆
√

n E∞K. (4.1)

In this section, we shall prove an Lp version of John’s inclusion.
If K is a convex body in Rn that contains the origin in its interior and real p > 0,

the star body Γ−pK is defined as the body whose radial function, for u ∈ Sn−1 is given
by:

ρΓ−pK(u)−p =
1
|K|

∫
Sn−1

|u · v|pdSp(K, v). (4.2)

Note for p ≥ 1 the body Γ−pK is a convex body. Define Γ−∞K by

Γ−∞K = lim
p→∞

Γ−pK. (4.3)

For real p > 0, use (1.7) and rewrite (4.2) as:

n−
1
p ρΓ−pK(u)−1 =

[
1

n|K|

∫
Sn−1

(
|u · v|
hK(v)

)p

hK(v) dS(K, v)
] 1

p

,

for u ∈ Sn−1. Thus, from (4.3),

ρΓ−∞K(u)−1 = max{|u·v|/hK(v) : v ∈ suppS(K, · )}.
Note that when K is origin-symmetric, Γ−∞K = K.

¿From (1.7) and definition (4.2) we see immediately that if λ > 0, then

Γ−pλK = λΓ−pK. (4.4)

Lemma 4.1. If 0 < p ≤ ∞ and K is a convex body in Rn that contains the origin in
its interior, then for φ ∈ GL(n),

Γ−pφK = φΓ−pK.

Proof. From (4.4) we see that it is sufficient to prove the lemma when φ ∈ SL(n).
For real p > 0, it follows from definition (4.2), Proposition 1.2, Definition 1.1, and
definition (4.2) again, that for u ∈ Sn−1:

ρΓ−pφK(u)−p =
1
|K|

∫
Sn−1

|u · v|p dS(p)
p (K, φtv)

=
1
|K|

∫
Sn−1

|u · φ−tv|p dSp(K, v)

= ρΓ−pK(φ−1u)−p.

The L∞ case is now a direct consequence of the real case and definition (4.3). �
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Lemma 4.2. If K is a convex body in Rn that contains the origin in its interior, then

EpK ⊇ Γ−pK when 0 < p < 2
EpK ⊆ Γ−pK when 2 < p ≤ ∞.

Proof. Lemmas 2.5 and 4.1 show that it suffices to prove the inclusions when EpK = B.
For 0 < p < 2, definition (4.2) and Theorem 2.2 show that for each u ∈ Sn−1,

ρΓ−pK(u)−p =
1
|K|

∫
Sn−1

|u · v|pdSp(K, v)

≥ 1
|K|

∫
Sn−1

|u · v|2dSp(K, v)

= 1.

This gives Γ−pK ⊆ B = EpK when 0 < p < 2.
When ∞ > p > 2, the inequality is reversed. Thus EpK ⊆ Γ−pK for real p > 2.

The case p = ∞ follows from the real case together with Theorem 3.5 and definition
(4.3). �

Of course the case p = 2 of Lemma 4.2 is known from Lemma 2.6: E2K = Γ−2K.

Our Lp version of John’s inclusion will be a corollary of:

Theorem 4.3. If K is a convex body in Rn that contains the origin in its interior,
then

Γ−qK ⊇ n
1
2−

1
q EpK when 0 < q ≤ p ≤ 2

Γ−qK ⊆ n
1
2−

1
q EpK when 2 ≤ p ≤ q ≤ ∞.

Proof. Lemmas 2.5 and 4.1 show that it suffices to prove the inclusions when EpK is
the unit ball. Since EpK = B, Definition 2.4 gives

Vp(K, B) = |K|. (4.3.1)

Suppose 0 < p < 2. Now definition (4.2), definition (1.7), Jensen’s inequality, defi-
nition 1.7 again, (4.3.1), Jensen’s inequality again, (4.3.1) again, and finally Theorem
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2.2, show that for each u ∈ Sn−1

ρΓ−qK(u)−1 = n
1
q

[
1

n|K|

∫
Sn−1

(
|u · v|
hK(v)

)q

hK(v) dS(K, v)
] 1

q

≤ n
1
q

[
1

n|K|

∫
Sn−1

(
|u · v|
hK(v)

)p

hK(v) dS(K, v)
] 1

p

= n
1
q

[
1

nVp(K, B)

∫
Sn−1

|u · v|pdSp(K, v)
] 1

p

≤ n
1
q

[
1

nVp(K, B)

∫
Sn−1

|u · v|2dSp(K, v)
] 1

2

= n
1
q

[
1

n|K|

∫
Sn−1

|u · v|2dSp(K, v)
] 1

2

= n
1
q−

1
2 .

Thus, n
1
2−

1
q EpK ⊆ Γ−qK.

When ∞ > q ≥ p ≥ 2, the inequality above is reversed. Thus, Γ−qK ⊆ n
1
2−

1
q EpK

when ∞ > q ≥ p ≥ 2. The case q = ∞ follows from the real case together with
Theorem 3.5 and definition (4.3). �

Recalling that for origin-symmetric K we have Γ−∞K = K, and choosing q = ∞
gives:

Corollary 4.4. If K is an origin-symmetric convex body in Rn, and 2 ≤ p ≤ ∞, then

K ⊆
√

n EpK.

By taking p = q in Theorem 4.3 and combining the inclusions with those of Lemma
4.2 we get the Lp version of John’s inclusion:

Corollary 4.5. If K is a convex body in Rn that contains the origin in its interior,
then

EpK ⊇ Γ−pK ⊇ n
1
2−

1
p EpK when 0 < p ≤ 2

EpK ⊆ Γ−pK ⊆ n
1
2−

1
p EpK when 2 ≤ p ≤ ∞.

5. Volume ratio inequalities

Theorem 5.1. If K is a convex body in Rn that contains the origin in its interior,
and 0 < p < q ≤ ∞, then

|EqK| ≤ |EpK|.
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Proof. From definitions (1.11) and (1.7), together with Jensen’s inequality, it follows
that for 0 < p ≤ q < ∞,

[
Vp(K, E)
|K|

] 1
p

=
[

1
n|K|

∫
Sn−1

(
hE(u)
hK(u)

)p

hK(u)dS(K, u)
] 1

p

≤
[

1
n|K|

∫
Sn−1

(
hE(u)
hK(u)

)q

hK(u)dS(K, u)
] 1

q

=
[
Vq(K, E)
|K|

] 1
q

.

The above together with Definition 2.4 immediately give the desired result for real q.
For q = ∞ we use the real case together with Theorem 3.5. �

In general, the Lp John ellipsoid EpK is not contained in K (except when p = ∞).
However when p ≥ 1, the volume of EpK is always dominated by the volume of K:

Theorem 5.2. If K is a convex body in Rn that contains the origin in its interior,
and 1 ≤ p ≤ ∞, then

|EpK| ≤ |K|,

with equality for p > 1, if and only if K is an ellipsoid centered at the origin, and
equality for p = 1 if and only if K is an ellipsoid.

Proof. First suppose p < ∞. From Definition 2.4 and the Lp-Minkowski inequality
(see [27]), we have

|K| = Vp(K, EpK) ≥ |K|
n−p

n |EpK|
p
n ,

with equality for p > 1, if and only if K = EpK, and equality for p = 1 if and only if
K and EpK are translates. A glance at (2.4) now completes the proof when p < ∞.
For p = ∞ combine this argument with Theorem 5.1 �

Theorem 5.1 and the Ball volume-ratio inequality (0.2), immediately give:

Theorem 5.3. If K is an origin-symmetric convex body in Rn, then for 0 < p ≤ ∞,

|K| ≤ 2n

ωn
|EpK|,

with equality if and only if K is a parallelotope.

Note that if K is the cube [−1, 1]n, then EpK = B. This and Lemma 2.5 shows that
for origin-centered parallelotopes there is indeed equality in the inequality of Theorem
5.3.

The case p = ∞ of Theorem 5.3 is due to Ball [3]. Our proof of Theorem 5.3 makes
critical use of the Ball volume ratio inequality. A direct proof of the inequality can be
found in [36] (see also [37]). The case p = 2 of Theorem 5.3 was established in [31].
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6. Projections of convex bodies

If p ∈ (0,∞], and if K is an origin-symmetric convex body in Rn, then K is said to
be Lp isotropic if there exists a c > 0, such that

c|x|2 =
∫

Sn−1
|x·v|2 dSp(K, v), for all x ∈ Rn.

Theorem 2.2 shows that K is Lp isotropic if and only if there exists a λ > 0, such that

EpK = λB.

For p = 1, our next theorem was established by Giannopoulos and Papadimitrakis
[13]. For p = 2 it was proved in [31]. Ball [1] had conjectured that the inequality of
the theorem should hold for some affine transformation of the body.

Theorem 6.1. If K is an origin-symmetric convex body in Rn that is Lp isotropic,
for some p ∈ [1, 2], then

voln−1(K|u⊥) ≤
√

n|K|
n−1

n , (6.1)

for all u ∈ Sn−1. There is equality in (6.1) for some u ∈ Sn−1 if and only if K is a
cube and u is in the direction of one of the vertices.

Proof. If inequality (6.1) holds for a body K then it obviously holds for all dilates of
the body. Thus we may assume that EpK = B.

¿From definition (4.2) and definition (1.7), together with Jensen’s inequality we
have

n−
1
p ρΓ−pK(u)−1 =

[
1

n|K|

∫
Sn−1

(
|u · v|
hK(v)

)p

hK(v)dS(K, v)
] 1

p

≥ 1
n|K|

∫
Sn−1

|u · v|dS(K, v)

=
2
n

voln−1(K|u⊥)/|K|.

Since EpK = B, Definition 2.4 combined with definition (1.14), give

Vp(K, B) = |K|. (6.1.1)

Definition (4.2), (6.1.1), Jensen’s inequality, (6.1.1) again, and finally Theorem 2.2
give

n−
1
p ρΓ−pK(u)−1 =

[
1

nVp(K, B)

∫
Sn−1

|u · v|pdSp(K, v)
] 1

p

≤
[

1
nVp(K, B)

∫
Sn−1

|u · v|2dSp(K, v)
] 1

2

=
[

1
n|K|

∫
Sn−1

|u · v|2dSp(K, v)
] 1

2

= 1/
√

n,
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with equality if and only if there exists a c > 0 such that |u · v| = c for all v ∈
supp S(K, · ).

By combining the last two inequalities we have,

voln−1(K|u⊥) ≤
√

n |K|/2, (6.1.2)

with equality if and only if there exists a c > 0 such that |u · v| = c for all v ∈
supp S(K, · ).

¿From Theorem 5.3, we see that EpK = B implies

|K| 1n ≤ 2, (6.1.3)

with equality if and only if K is a cube centered at the origin. Combining (6.1.2) and
(6.1.3) gives the desired inequality.

If there is equality in (6.1) then K must be a cube centered at the origin. Since in
this case suppS(K, · ) = {±e1, . . . ,±en}, equality implies there exists a c > 0 such
that c = |ui| = |u · ei| for all i, and hence u = (±1, . . . ,±1)/

√
n. �

7. Lp-John ellipsoids of polar reciprocal bodies

If K is an origin symmetric convex body, the Blaschke-Sanatlaó inequality is the
right side of

4n

n!
≤ |K| |K∗| ≤ ω2

n.

There is equality in the right inequality if and only if K is an ellipsoid. The left inequal-
ity is a central conjecture, known as the Mahler conjecture: Among origin-symmetric
convex bodies the volume-product is minimized by cubes and cross-polytopes (as well
as other bodies). The left inequality has been verified for the class of zonoids (and
their polars) by Reisner [41], [42] (see also [14]). For origin symmetric bodies, in gen-
eral, the best results in the direction of the Mahler conjecture is the Bourgain-Milman
inequality [6], which provides the correct asymptotic lower bound.

For the volumes of the Lp-John ellipsoids of polar reciprocal convex bodies we have:

Theorem 7.1. If p ∈ [1,∞] and K is an origin-symmetric convex body, then

ω2
n n−n/2 ≤ |EpK| |EpK

∗| ≤ ω2
n, (7.1)

with equality in the right inequality if and only if K is an ellipsoid and equality in the
left inequality if K is a cube or the octahedron.

Proof. An immediate consequence of John’s inclusion (0.1) and the definition of the
polar body is that n−1/2 E∗∞K ⊂ K∗. This and the definition of E∞ shows that

|E∗∞K| ≤ nn/2|E∞K∗|. (7.1.1)

But |E∞K| |E∗∞K| = ω2
n and this when combined with (7.1.1) gives the left inequality

of (7.1).
To obtain the right inequality, combine Theorem 5.2 with the Blaschke-Santaló

inequality. �
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It is tempting to conjecture that the extremal bodies for the left inequality in
Theorem 7.1 will turn out to be exactly the same as the extremal bodies of Mahler’s
conjecture.

8. Two theorems of Lewis

We now show how basic results regarding Lp-John ellipsoids can be used to obtain
two important theorems of Lewis [22], [23].

An origin-symmetric convex body K in Rn gives rise to a Banach norm ‖ · ‖K on
Rn, defined for x ∈ Rn by,

‖x‖K = 1/ρK(x), (8.1)

for which K is the unit ball (i.e., K = {x ∈ Rn : ‖x‖K ≤ 1}). Conversely if (Rn, ‖ · ‖)
is a normed space with unit ball K (i.e., K = {x ∈ Rn : ‖x‖ ≤ 1}), it is easily seen
that ‖ · ‖ = ‖ · ‖K .

Suppose (Rn, ‖ · ‖) is isometric to an n-dimensional subspace of Lp. Hence there
exists a Borel measure µ on Sn−1 such that

‖x‖ =
(∫

Sn−1
|x·v|p dµ(v)

)1/p

, (8.2)

for all x ∈ Rn. Since we are not dealing with an (n − 1)-dimensional subspace, µ
cannot be concentrated on a great sub-sphere of Sn−1. We may assume the measure
µ is even (i.e., takes on the same value on antipodal Borel sets), if necessary, by
replacing the measure µ by the even measure µ∗, defined by 2µ∗(ω) = µ(ω) + µ(−ω),
for each Borel ω ⊂ Sn−1. The solution to the even Lp Minkowski problem (see
[35] and [27]) guarantees the existence of an origin-symmetric convex body K such
that 1

|K|dSp(K, · ) = dµ. This together with (8.2), (4.2), and (8.1), shows that
‖ · ‖ = ‖ · ‖Γ−pK . This gives:

Lemma 8.1. Suppose 1 ≤ p ≤ ∞. The Banach space (Rn, ‖ · ‖) is an n-dimensional
subspace of Lp if and only if there exists an origin-symmetric convex body K such that

‖ · ‖ = ‖ · ‖Γ−pK .

An important theorem of Lewis [22] is:

Theorem 8.2. If ` is an n-dimensional subspace of Lp, then ` is isometric to the
Banach space (Rn, ‖ · ‖) where the norm ‖ · ‖ can be represented by a Borel measure,
µ, such that for all x ∈ Rn

‖x‖ =
(∫

Sn−1
|x·v|p dµ(v)

)1/p

, (8.2a)

and

|x| =
(∫

Sn−1
|x·v|2 dµ(v)

)1/2

. (8.2b)
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Proof. By Lemma 8.1 there exists an origin-symmetric convex body K such that ` =
(Rn, ‖ · ‖Γ−pK). Choose a φ ∈ GL(n) that transforms the ellipsoid EpK into the unit
ball B. Thus from Lemma 2.5,

EpφK = φ EpK = B. (8.2.1)
Since their unit balls are GL(n)-images, (Rn, ‖ · ‖φΓ−pK) is isometric to `. To see that
for (Rn, ‖ · ‖φΓ−pK) there is a measure with the desired properties (8.2a) and (8.2b),
define the Borel measure µ on Sn−1 by

dµ =
1

|φK|
dSp(φK, · ). (8.2.2)

¿From (8.2.2) and definition (4.2) together with (8.2.1) we get the desired (8.2a). But
(8.2.2) and Theorem 2.2b together with (8.2.1) gives the desired property (8.2b). �

The Banach-Mazur distance, d(X, X ′), between two n-dimensional Banach spaces
X = (Rn, ‖ · ‖K) and X ′ = (Rn, ‖ · ‖K′) is defined by

d(X, X ′) = inf{c > 0 : K ⊆ φK ′ ⊆ cK for some φ ∈ GL(n)}.
Corollary 4.5, together with Lemma 8.1, gives the following fundamental result

of Lewis [22], [23] regarding the Banach-Mazur distance between an arbitrary n-
dimensional subspace of Lp and ordinary Euclidean n-space, `n

2 = (Rn, ‖ · ‖B):

Theorem 8.3. Suppose 1 ≤ p < ∞. If X is an n-dimensional Banach subspace of
Lp, then

d(X, `n
2 ) ≤ n|

1
p−

1
2 |.

9. An open problem regarding the conical-volume measure of a body

Thus far Lp-John ellipsoids have been defined for 0 < p ≤ ∞. A critical case is p = 0.
This case is especially interesting because the 0-surface area measure dS0(K, · ) =
hKdS(K, · ) is the conical-volume measure of K, which can be described as follows.

Recall that u ∈ Sn−1 is an outer unit normal at x ∈ ∂K, if it is the outer unit
normal of some supporting hyperplane at x. Given ω ⊆ Sn−1, let CK(ω) ⊂ ∂K denote
the set of all points that have an outer unit normal in ω. Now S0(K, ω), the conical-
volume measure of ω, is defined to be n times the volume of the cone obtained by
taking the union of all line segments that connect the origin to a point in CK(ω). The
existence of E0K can be formulated as follows:

Problem 9.1. If K is a convex body in Rn, that contains the origin in its interior,
then does there exist a linear transformation φ ∈ GL(n) so that

|x|2 =
∫

Sn−1
|x · u|2dS0(φK, u),

for all x ∈ Rn?

In other words, Problem 9.1 asks if every convex body can be SL(n)-transformed
into a body that is L0-isotropic. Under certain smoothness assumptions on ∂K, an
affirmative answer to Problem 9.1 can be given by employing an argument similar to
that used in establishing Theorem 2.3 . For arbitrary convex bodies, Problem 9.1 is
interesting and appears to be non-trivial.
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46. C. Schütt and E. Werner, Surface bodies and p-affine surface area, Adv. Math., (in press).

47. A. Stancu, The discrete planar L0-Minkowski problem., Adv. Math. 167 (2002), 160–174.
48. A. Stancu, On the number of solutions to the discrete two-dimensional L0-Minkowski

problem., Adv. Math. 180 (2003), 190–323.
49. A.C. Thompson, Minkowski geometry, Camb. Univ. Press, Cambridge, 1996.

50. V. Umanskiy, On solvability of the two dimensional Lp-Minkowski problem, Adv. Math.

180 (2003), 176–186.
51. E. Werner, The p-affine surface area and geometric interpretations, Rend. Circ. Mat.

Palermo 70 (2002), 367-382.


